

iOS Apprentice
Matthijs Hollemans

Copyright ©2016 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

License
By purchasing iOS Apprentice, you have the following license:

• You are allowed to use and/or modify the source code in iOS Apprentice in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are
included in iOS Apprentice in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from iOS
Apprentice book, available at www.raywenderlich.com”.

• The source code included in iOS Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in iOS Apprentice without prior
authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students;
they would need to purchase their own copies.

iOS Apprentice

raywenderlich.com 2

About the author
Matthijs Hollemans is a mystic who lives at the top of a mountain
where he spends all of his days and nights coding up awesome
apps. Actually he lives below sea level in the Netherlands and is
pretty down-to-earth but he does spend too much time in Xcode.
Check out his website at www.matthijshollemans.com.

About the cover
Striped dolphins live to about 55-60 years of age, can travel in pods numbering in
the thousands and can dive to depths of 700 m to feed on fish, cephalopods and
crustaceans. Baby dolphins don't sleep for a full a month after they’re born. That
puts two or three sleepless nights spent debugging code into perspective, doesn't
it? :]

iOS Apprentice

raywenderlich.com 3

Table of Contents: Extended
Tutorial 3: MyLocations 6...

The MyLocations app 6..
Swift review 7...
Getting GPS coordinates 29...
Objects vs. classes 76...
The Tag Location screen 88...
Value types and reference types 130..
Storing the locations with Core Data 136...
The Locations tab 166..
Hierarchies 191..
Pins on a map 193..
The photo picker 212..
Making the app look good 244...
The end 279..

iOS Apprentice

raywenderlich.com 5

3Tutorial 3: MyLocations
By Matthijs Hollemans

The MyLocations app
In this tutorial you will look at some of the more alluring technologies from the iOS
SDK and you’ll dive a lot deeper into the Swift language.

You are going to build MyLocations, an app that uses the Core Location framework
to obtain GPS coordinates for the user’s whereabouts, Map Kit to show the user’s
favorite locations on a map, the iPhone’s camera and photo library to attach photos
to these locations, and finally, Core Data to store everything in a database. Phew,
that’s a lot of stuff!

The finished app looks like this:

The MyLocations app

MyLocations lets you keep a list of spots that you find interesting. Go somewhere

raywenderlich.com 6

with your iPhone or iPod touch and press the Get My Location button to obtain GPS
coordinates and the corresponding street address. Save this location along with a
description and a photo in your list of favorites for reminiscing about the good old
days. Think of this app as a “location album” instead of a photo album.

To make the workload easier to handle, you’ll split up the project into smaller
chunks:

1. You will first figure out how to obtain GPS coordinates from the Core Location
framework and how to convert these coordinates into an address, a process
known as reverse geocoding. Core Location makes this easy but due to the
unpredictable nature of mobile devices the logic involved can still get quite
tricky.

2. Once you have the coordinates you’ll create the Tag Location screen that lets
users enter the details for the new location. This is a table view controller with
static cells, very similar to what you’ve done in the previous tutorial.

3. You’ll store the location data into a Core Data store. In the previous tutorial you
saved the app’s data into a .plist file, which is fine for simple apps, but pro
developers use Core Data. It’s not as scary as it sounds!

4. Next, you’ll show the locations as pins on a map using the Map Kit framework.

5. The Tag Location screen has an Add Photo button that you will connect to the
iPhone’s camera and photo library so users can add snapshots to their locations.

6. Finally, you’ll make the app look good with custom graphics. You will also add
sound effects and some animations into the mix.

But before you get to all that… first some theory. There is still a lot more to learn
about Swift and object-oriented programming!

Swift review
In the past tutorials I’ve shown you a fair bit of the Swift programming language
already, but not quite everything. I’ve glossed over some of the details and told you
a few small lies just so you wouldn’t drown in new information.

Previously it was good enough if you could more-or-less follow along with what we
were doing, but now is the time to fill in the gaps in the theory.

First, let’s do a little refresher on what we’ve talked about so far.

Variables, constants, and types
A variable is a temporary container for a specific type of value:

var count: Int

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 7

var shouldRemind: Bool
var text: String
var list: [ChecklistItem]

The data type, or just type, of a variable determines what kind of values it can
contain. Some variables hold simple values such as Int and Bool, others hold more
complex objects such as String and Array.

The basic types you’ve used so far are: Int for whole numbers, Float for numbers
with decimals (also known as floating-point numbers), and Bool for boolean values
(true and false).

There are a few other fundamental types as well:

• Double. Similar to a Float but with more precision. You will use Doubles later in
this tutorial for storing latitude and longitude data.

• Character. Holds just a single character. A String is a collection of Characters.

• UInt. A variation on Int that you may encounter occasionally. The U stands for
“unsigned”, meaning the type can hold positive values only. It’s called unsigned
because it cannot have a negative sign (-) in front of the number. UInt can store
numbers between 0 and 18 quintillion, but no negative numbers.

• Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64. These are all variations
on Int. The difference is in how many bytes they have available to store their
values. The more bytes, the bigger the values can be. In practice you almost
always use Int, which uses 8 bytes for storage (a fact that you may immediately
forget) and can fit positive and negative numbers up to about 19 digits. Those
are big numbers!

• CGFloat. This isn’t really a Swift type but a type defined by the iOS SDK. It’s a
decimal point number like Float and Double. For historical reasons, this is used
throughout UIKit for floating-point values. (The “CG” prefix stands for the Core
Graphics framework.)

Swift is very strict about types, more so than many other languages. If the type of
a variable is Int, you cannot put a Float value into it. The other way around also
won’t work: an Int doesn’t go into a Float.

Even though both types represent numbers of some sort, Swift won’t automatically
convert between different number types. You always need to convert the values
explicitly.

For example:

var i = 10
var f: Float
f = i // error
f = Float(i) // OK

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 8

You don’t always need to specify the type when you create a new variable. If you
give the variable an initial value, Swift uses type inference to determine the type:

var i = 10 // Int
var d = 3.14 // Double
var b = true // Bool
var s = "Hello, world" // String

The integer value 10, the floating-point value 3.14, the boolean true and the string
"Hello, world" are named literal constants or just literals.

Note that using the value 3.14 in the example above leads Swift to conclude that
you want to use a Double here. If you intended to use a Float instead, you’d have
to write:

var f: Float = 3.14

The “: Float” bit is called a type annotation. You use it to override the guess
made by Swift’s type inference mechanism, which may not always be what you
intended.

Likewise, if you wanted the variable i to be a Double instead of an Int, you’d write:

var i: Double = 10

Or a little shorter, by giving the value 10 a decimal point:

var i = 10.0

These simple literals such as 10, 3.14, or "Hello world", are useful only for creating
variables of the basic types – Int, Double, String, and so on. To use more complex
types, you’ll need to instantiate an object first.

When you write the following,

var item: ChecklistItem

it only tells Swift you want to store a ChecklistItem object into the item variable,
but it does not create that ChecklistItem object yet. For that you need to write:

item = ChecklistItem()

This first reserves memory to hold the object’s data, followed by a call to init() to
properly make the object ready for use. Reserving memory is also called
allocation; filling up the object with its initial values is initialization.

The whole process is known as instantiating the object – you’re making an object
instance. The instance is the block of memory that holds the values of the object’s
variables (that’s why they are called “instance variables”, get it?).

Of course, you can combine the above into a single line:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 9

var item = ChecklistItem()

Here you left out the “: ChecklistItem” type annotation because Swift is smart
enough to realize that the type of item should be ChecklistItem.

However, you can’t leave out the () parentheses – this is how Swift knows that you
want to make a new ChecklistItem instance.

Some objects allow you to pass parameters to their init method. For example:

var item = ChecklistItem(text: "Charge my iPhone", checked: false)

This calls the corresponding init(text, checked) method to prepare the newly
allocated ChecklistItem object for usage.

You’ve seen two types of variables: local variables, whose existence is limited to
the method they are declared in, and instance variables (also known as “ivars” or
properties) that belong to the whole object and therefore can be used from within
any method.

The lifetime of a variable is called its scope. The scope of a local variable is smaller
than that of an instance variable. Once the method ends, any local variables are
destroyed.

class MyObject {
 var count = 0 // an instance variable

 func myMethod() {
 var temp: Int // a local variable
 temp = count // OK to use the instance variable here
 }

 // the local variable “temp” doesn’t exist outside of the method
}

If you have a local variable with the same name as an instance variable, then it is
said to shadow (or hide) that instance variable. You should avoid these situations
as they can lead to subtle bugs where you may not be using the variable that you
think you are:

class MyObject {
 var count = 7 // an instance variable

 func myMethod() {
 var count = 42 // local variable “shadows” instance variable
 print(count) // prints 42
 }
}

Some developers place an underscore in front of their instance variable names to
avoid this problem: _count instead of count. An alternative is to use the keyword
self whenever you want to access an instance variable:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 10

 func myMethod() {
 var count = 42
 print(self.count) // prints 7
 }

Variables are not the only thing than can hold values. A variable is a container for a
value that is allowed to change over the course of the app being run.

For example, in a note-taking app the user can change the text of the note, so
you’d place that text into a String variable. Every time the user edits the text, the
variable is updated.

Often you’ll just want to store the result of a calculation or a method call into a
temporary container, after which this value will never change. In that case, it is
better to make this container a constant rather than a variable.

The following values never need to change once they’ve been set:

let pi = 3.141592
let difference = abs(targetValue - currentValue)
let message = "You scored \(points) points"
let image = UIImage(named: "SayCheese")

If a constant is local to a method, it’s allowed to give the constant a new value the
next time the method is called. The value from the previous method invocation has
been destroyed when that method ended, and the next time the app enters that
method you’re creating a new constant with a new value (but with the same name).
Of course, for the duration of that method call the constant’s value must remain the
same.

Tip: My suggestion is to use let for everything. That is the right solution 90% of
the time. When you’ve got it wrong, the Swift compiler will warn that you’re trying
to change a constant. Only then you change it to a var. This ensures you’re not
making things variable that don’t need to be.

When working with basic values such as integers and strings – so called value
types – a constant created with let cannot be changed once it has been given a
value:

let pi = 3.141592
pi = 3 // not allowed

However, with objects that are reference types, it is only the reference that is
constant. The object itself can still be changed:

let item = ChecklistItem()
item.text = "Do the laundry"
item.checked = false
item.dueDate = yesterday

But this is not allowed:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 11

let anotherItem = ChecklistItem()
item = anotherItem // cannot change the reference

So how do you know what is a reference type and what is a value type?

Objects defined with class are reference types, while objects defined with struct or
enum are value types. In practice this means most of the objects from the iOS SDK
are reference types but things that are built into the Swift language, such as Int,
String, and Array, are value types. (More about this important difference later.)

A variable stores only a single value. To keep track of multiple objects you can use
a so-called collection object. Naturally, I’m talking about arrays (Array) and
dictionaries (Dictionary), both of which you’ve seen in the previous tutorial.

An array stores a list of objects. The objects it contains are ordered sequentially
and you retrieve them by index.

// an array of ChecklistItem objects:
var items: Array<ChecklistItem>

// using shorthand notation:
var items: [ChecklistItem]

// making an instance of the array:
items = [ChecklistItem]()

// accessing an object from the array:
let item = items[3]

You can write an array as Array<Type> or [Type]. The first one is the official name,
the second is “syntactic sugar” that is a bit easier to read. (Unlike other languages,
you don’t write Type[]. The type name goes inside the brackets.)

A dictionary stores key-value pairs. One object, usually a string, is the key that
retrieves another object.

// a dictionary that stores (String, Int) pairs, for example a
// list of people’s names and their ages:
var ages: Dictionary<String, Int>

// using shorthand notation:
var ages: [String: Int]

// making an instance of the dictionary:
ages = [String: Int]()

// accessing an object from the dictionary:
var age = dict["Jony Ive"]

The notation for retrieving an object from a dictionary looks very similar to reading
from an array – both use the [] brackets. For indexing an array you always use a
positive integer but for a dictionary you typically use a string.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 12

There are other sorts of collections as well but array and dictionary are the most
common ones.

Array and Dictionary are so-called generics, meaning that they are independent of
the type of thing you want to store inside these collections.

You can have an Array of Int objects, but also an Array of String objects – or an
Array of any kind of object, really (even an array of other arrays).

That’s why before you can use Array you have to specify the type of object to store
inside the array. In other words, you cannot write this:

var items: Array // error: should be Array<TypeName>
var items: [] // error: should be [TypeName]

There should always be the name of a type inside the [] brackets or following the
word Array in < > brackets. (If you’re coming from Objective-C, be aware that the <
> mean something completely different there.)

For Dictionary, you need to supply two type names: one for the type of the keys
and one for the type of the values.

Swift requires that all variables and constants have a value. You can either specify a
value when you declare the variable or constant, or by assigning a value inside an
init method.

Sometimes it’s useful to have a variable that can have no value, in which case you
need to declare it as an optional:

var checklistToEdit: Checklist?

You cannot use this variable directly; you must always test whether it has a value
or not. This is called unwrapping the optional:

if let checklist = checklistToEdit {
 // “checklist” now contains the real object
} else {
 // the optional was nil
}

The age variable from the dictionary example is actually an optional, because there
is no guarantee that the dictionary contains the key “Jony Ive”. Therefore, the type
of age is Int? instead of just Int.

Before you can use a value from a dictionary, you need to unwrap it first using if
let:

if let age = dict["Jony Ive"] {
 // use the value of age
}

If you are 100% sure that the dictionary contains the key you can also use force

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 13

unwrapping to read the corresponding value:

var age = dict["Jony Ive"]!

With the ! you tell Swift, “This value will not be nil. I’ll stake my reputation on it!”
Of course, if you’re wrong and the value is nil, the app will crash and your
reputation is down the drain. Be careful with force unwrapping!

A slightly safer alternative to force unwrapping is optional chaining. For example,
the following will crash the app if the navigationController property is nil:

navigationController!.delegate = self

But this won’t:

navigationController?.delegate = self

Anything after the ? will simply be ignored if navigationController does not have a
value. It’s equivalent to writing:

if navigationController != nil {
 navigationController!.delegate = self
}

It is also possible to declare an optional using an exclamation point instead of a
question mark. This makes it an implicitly unwrapped optional:

var dataModel: DataModel!

Such a value is potentially unsafe because you can use it as a regular variable
without having to unwrap it first. If this variable has the value nil when you don’t
expect it – and don’t they always – your app will crash.

Optionals exist to guard against such crashes, and using ! undermines the safety of
using optionals.

However, sometimes using implicitly unwrapped optionals is more convenient than
using pure optionals. Use them when you cannot give the variable an initial value at
the time of declaration, nor in init().

But once you’ve given the variable a value, you really ought not to make it nil
again. If the value can become nil again, it’s better to use a true optional with a
question mark.

Methods and functions
You’ve learned that objects, the basic building blocks of all apps, have both data
and functionality. The instance variables and constants provide the data, methods
provide the functionality.

When you call a method, the app jumps to that section of the code and executes all

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 14

the statements in the method one-by-one. As the end of the method is reached, the
app jumps back to where it left off:

let result = performUselessCalculation(314)
print(result)

. . .

func performUselessCalculation(_ a: Int) -> Int {
 var b = Int(arc4random_uniform(100))
 var c = a / 2
 return (a + b) * c
}

Methods often return a value to the caller, usually the result of a computation or
looking up something in a collection. The data type of the result value is written
behind the -> arrow. In the example above, it is Int. If there is no -> arrow, the
method does not return a value (also known as “Void”).

Methods are functions that belong to an object, but there are also standalone
functions such as print() and arc4random_uniform().

Functions serve the same purpose as methods – they bundle functionality into small
re-usable units – but live outside of any objects. Such functions are also called free
functions or global functions.

These are examples of methods:

// Method that doesn’t have any parameters, doesn’t return a value.
override func viewDidLoad()

// Method that has one parameter, slider. It doesn’t return a value.
// The keyword @IBAction means that this method can be connected
// to a control in Interface Builder.
@IBAction func sliderMoved(_ slider: UISlider)

// Method that doesn’t have any parameters, returns an Int value.
func countUncheckedItems() -> Int

// Method with two parameters, cell and item, no return value.
// Note that the first parameter has an extra label, for, and the
// second parameter has an extra label, with.
func configureCheckmarkFor(for cell: UITableViewCell,
 with item: ChecklistItem)

// Method with two parameters, tableView and section. Returns an Int.
// The _ means the first parameter does not have an external label.
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int

// Method with two parameters, tableView and indexPath.
// The question mark means it returns an optional IndexPath object
// (may also return nil).
override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath?

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 15

To call a method on an object, you write object.method(parameters). For example:

// Calling a method on the lists object:
lists.append(checklist)

// Calling a method with more than one parameter:
tableView.insertRows(at: indexPaths, with: .fade)

You can think of calling a method as sending a message from one object to
another: “Hey lists, I’m sending you the append message for this checklist
object.”

The object whose method you’re calling is known as the receiver of the message.

It is very common to call a method from the same object. Here, loadChecklists()
calls the sortChecklists() method. Both are members of the DataModel object.

class DataModel {
 func loadChecklists() {
 . . .
 sortChecklists() // this method also lives in DataModel
 }

 func sortChecklists() {
 . . .
 }
}

Sometimes this is written as:

 func loadChecklists() {
 . . .
 self.sortChecklists()
 }

The self keyword makes it clear that the DataModel object itself is the receiver of
this message.

Note: In these tutorials I leave out the self keyword for method calls,
because it’s not necessary to have it. Objective-C developers are very attached
to self, so you’ll probably see it used a lot in Swift too. It is a topic of heated
debate in developer circles, but in the end the app doesn’t really care whether
you use self or not.

Inside a method you can also use self to get a reference to the object itself:

@IBAction func cancel() {
 delegate?.itemDetailViewControllerDidCancel(self)
}

Here cancel() sends a reference to the object (i.e. self) along to the delegate, so

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 16

the delegate knows who sent this itemDetailViewControllerDidCancel() message.

Also note the use of optional chaining here. The delegate property is an optional,
so it can be nil. Using the question mark before the method call will ensure nothing
bad happens if delegate is not set.

Often methods have one or more parameters, so you can make them work on
data that comes from different sources. A method that is limited to a fixed set of
data is not very useful or reusable. Consider sumValuesFromArray(), a method that
has no parameters:

class MyObject {
 var numbers = [Int]()

 func sumValuesFromArray() -> Int {
 var total = 0
 for number in numbers {
 total += number
 }
 return total
 }
}

Here, numbers is an instance variable. The sumValuesFromArray() method is tied
closely to that instance variable, and is useless without it.

Suppose you add a second array to the app that you also want to apply this
calculation to. One approach is to copy-paste the above method and change the
name of the variable to that of the new array. That certainly works but it’s not
smart programming!

It is better to give the method a parameter that allows you to pass in the array
object that you wish to examine, so the method becomes independent from any
instance variables:

func sumValues(from array: [Int]) -> Int {
 var total = 0
 for number in array {
 total += number
 }
 return total
}

Now you can call this method with any [Int] or Array<Int> object as its parameter.

This doesn’t mean methods should never use instance variables, but if you can
make a method more general by giving it a parameter then that is usually a good
idea.

Often methods use two names for their parameters, the external label and the
internal label. For example:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 17

func downloadImage(for searchResult: SearchResult,
 withTimeout timeout: TimeInterval,
 andPlaceOn button: UIButton) {
 . . .
}

This method has three parameters: searchResult, timeout, and button. Those are
the internal parameter names you’d use in the code inside the method.

The external labels become part of the method name. The full name for the method
is downloadImage(for, withTimeout, andPlaceOn). Method names in Swift are often
quite long!

To call this method, you’d use the external labels:

downloadImage(for: result, withTimeout: 10, andPlaceOn: imageButton)

Sometimes you’ll see a method whose first parameter does not have an external
label, but has an _ underscore instead:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int

This is often the case with delegate methods. It’s a holdover from the Objective-C
days, where the label for the first parameter was embedded in the first part of the
method name. For example, in Objective-C the downloadImage() method would be
named downloadImageForSearchResult(). These kinds of names should become less
and less common in the near future.

Swift is pretty flexible with how it lets you name your methods, but it’s smart to
stick to the established conventions.

Inside a method you can do the following things:

• Create local variables and constants.

• Do basic arithmetic with mathematical operators such as +, -, *, /, and %.

• Put new values into variables (both local and instance variables).

• Call other methods.

• Make decisions with the if or switch statements.

• Perform repetitions with the for or while statements.

• Return a value to the caller.

Let’s look at the if and for statements in more detail.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 18

Making decisions
The if-statement looks like this:

if count == 0 {
 text = "No Items"
} else if count == 1 {
 text = "1 Item"
} else {
 text = "\(count) Items"
}

The expression after if is called the condition. If a condition is true then the
statements in the following { } block are executed. The else section gets
performed if none of the conditions are true.

You use comparison operators to perform comparisons between two values:

== equal to

!= not equal

> greater than

>= greater than or equal

< less than

<= less than or equal

When you use the == operator, the contents of the objects are compared. This only
returns true if a and b have the same value:

let a = "Hello, world"
let b = "Hello," + " world"
print(a == b) // prints true

This is different from Objective-C, where == is only true if the two objects are the
exact same instance in memory. However, in Swift == compares the values of the
objects, not whether they actually occupy the same spot in memory. (If you need to
do that use ===, the identity operator.)

You can use logical operators to combine two expressions:

a && b is true if both a and b are true

a || b is true when either a or b is true (or both)

There is also the logical not operator, !, that turns true into false, and false into
true. (Don’t confuse this with the ! that is used with optionals.)

You can group expressions with () parentheses:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 19

if ((this && that) || (such && so)) && !other {
 // statements
}

This reads as:

if ((this and that) or (such and so)) and not other {
 // statements
}

Or if you want to see clearly in which order these operations are performed:

if (
 (this and that)
 or
 (such and so)
)
 and
 (not other)

Of course, the more complicated you make it, the harder it is to remember exactly
what you’re doing!

Swift has another very powerful construct in the language for making decisions, the
switch statement:

switch condition {
 case value1:
 // statements

 case value2:
 // statements

 case value3:
 // statements

 default:
 // statements
}

It works the same way as an if statement with a bunch of else ifs. The following
is equivalent:

if condition == value1 {
 // statements
} else if condition == value2 {
 // statements
} else if condition == value3 {
 // statements
} else {
 // statements
}

In such a situation, the switch statement would be more convenient to use. Swift’s

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 20

version of switch is more much powerful than the one in Objective-C. For example,
you can match on ranges and other patterns:

switch difference {
 case 0:
 title = "Perfect!"
 case 1..<5:
 title = "You almost had it!"
 case 5..<10:
 title = "Pretty good!"
 default:
 title = "Not even close..."
}

The ..< is the half-open range operator. It creates a range between the two
numbers, but the top number is exclusive. So the half-open range 1..<5 is the
same as the closed range 1...4.

You’ll see the switch statement in action a little later in this tutorial.

Note that if and return can be used to return early from a method:

func divide(_ a: Int, by b: Int) -> Int {
 if b == 0 {
 print("You really shouldn't divide by zero")
 return 0
 }
 return a / b
}

This can even be done for methods that don’t return a value:

func performDifficultCalculation(list: [Double]) {
 if list.count < 2 {
 print("Too few items in list")
 return
 }

 // perform the very difficult calculation here
}

In this case, return simply means: “We’re done with the method”. Any statements
following the return are skipped and execution immediately returns to the caller.

You could also have written it like this:

func performDifficultCalculation(list: [Double]) {
 if list.count < 2 {
 print("Too few items in list")
 } else {
 // perform the very difficult calculation here
 }
}

Whichever you use is up to personal preference. If there are only two cases such as

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 21

in the above example, I prefer to use an else but the early return will work just as
well.

Sometimes you see code like this:

func someMethod() {
 if condition1 {
 if condition2 {
 if condition3 {
 // statements
 } else {
 // statements
 }
 } else {
 // statements
 }
 } else {
 // statements
 }
}

This can become very hard to read, so I like to restructure that kind of code as
follows:

func someMethod() {
 if !condition1 {
 // statements
 return
 }

 if !condition2 {
 // statements
 return
 }

 if !condition3 {
 // statements
 return
 }

 // statements
}

Both do exactly the same thing, but I find the second one much easier to
understand. (Note that the conditions now use the ! operator to invert their
meaning.)

Swift even has a dedicated feature, guard, to help write this kind of code. It looks
like this:

func someMethod() {
 guard condition1 else {
 // statements
 return
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 22

 guard condition2 else {
 // statements
 return
 }
 . . .

As you become more experienced, you’ll start to develop your own taste for what
looks good and what is readable code.

Loops
You’ve seen the for in statement for looping through an array:

for item in items {
 if !item.checked {
 count += 1
 }
}

Which can also be written as:

for item in items where !item.checked {
 count += 1
}

This performs the statements inside the for in block once for each object from the
items array.

Note that the scope of the variable item is limited to just this for-statement. You
can’t use it outside this statement, so its lifetime is even shorter than a local
variable.

Some languages, including Swift 2, have a for-statement that looks like this:

for var i = 0; i < 5; ++i {
 print(i)
}

When you run this code, it should print:

0
1
2
3
4

However, as of Swift 3.0 this kind of for loop is now removed from the language.
Instead, you can loop over a range. This outputs the same as above:

for i in 0...4 { // or 0..<5
 print(i)
}

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 23

By the way, you can also write this loop as:

for i in stride(from: 0, to: 5, by: 1) {
 print(i)
}

The stride() function creates a special object that represents the range 0 to 5 in
increments of 1. If you wanted to show just the even numbers, you could change
the by parameter to 2. You can even use stride() to count backwards if you give by
a negative number.

The for-statement is not the only way to perform loops. Another very useful looping
construct is the while statement:

while something is true {
 // statements
}

The while-loop keeps repeating the statements until its condition becomes false.
You can also write it as follows:

repeat {
 // statements
} while something is true

In the latter case, the condition is evaluated after the statements have been
executed at least once.

You can rewrite the loop that counts the ChecklistItems as follows using a while
statement:

var count = 0
var i = 0
while i < items.count {
 let item = items[i]
 if !item.checked {
 count += 1
 }
 i += 1
}

Most of these looping constructs are really the same, they just look different. Each
of them lets you repeat a bunch of statements until some ending condition is met.

Still, using a while is slightly more cumbersome than “for item in items”, which is
why you’ll see for in used most of the time.

There really is no significant difference between using a for, while, or repeat while
loop, except that one may be easier to read than the others, depending on what
you’re trying to do.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 24

Note: items.count and count in this example are two different things with the
same name. The first count is a property on the items array that returns the
number of elements in that array; the second count is a local variable that
contains the number of unchecked to-do items counted so far.

Just like you can prematurely exit from a method using the return statement, you
can exit a loop at any time using the break statement:

var found = false
for item in array {
 if item == searchText {
 found = true
 break
 }
}

This example loops through the array until it finds an item that is equal to the value
of searchText (presumably both are strings). Then it sets the variable found to true
and jumps out of the loop using break. You’ve found what you were looking for, so it
makes no sense to look at the other objects in that array (for all you know there
could be hundreds).

There is also a continue statement that is somewhat the opposite of break. It
doesn’t exit the loop but immediately skips to the next iteration. You use continue
to say, “I’m done with the current item, let’s look at the next one.”

Loops can often be replaced by functional programming constructs such as map,
filter, or reduce. These are functions that operate on a collection, perform some
code for each element, and return a new collection with the results.

For example, using filter on an array will only keep items if they satisfy a certain
condition. To get a list of all the unchecked ChecklistItem objects, you’d write:

var uncheckedItems = items.filter { item in !item.checked }

That’s a lot simpler than writing a loop. Functional programming is an advanced
topic so we won’t spend too much time on it here.

Objects
Objects are what it’s all about. They combine data with functionality into coherent,
reusable units – that is, if you write them properly!

The data is made up of the object’s instance variables and constants. We often refer
to these as the object’s properties. The functionality is provided by the object’s
methods.

In your Swift programs you will use existing objects, such as String, Array, Date,
UITableView, and you’ll also make your own.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 25

To define a new object, you need a MyObject.swift file that contains a class
section:

class MyObject {
 var text: String
 var count = 0
 let maximum = 100

 init() {
 text = "Hello world"
 }

 func doSomething() {
 // statements
 }
}

Inside the brackets for the class, you add properties (the instance variables and
constants) and methods.

There are two types of properties:

• stored properties are the usual instance variables and constants

• computed properties don’t store a value but perform logic when you read or
write their values

This is an example of a computed property:

var indexOfSelectedChecklist: Int {
 get {
 return UserDefaults.standard().integerForKey("ChecklistIndex")
 }
 set {
 UserDefaults.standard().set(newValue, forKey: "ChecklistIndex")
 }
}

The indexOfSelectedChecklist property does not store a value like a normal
variable would. Instead, every time someone uses this property it performs the
code from the get or set block. The alternative would be to write separate
setIndexOfSelectedChecklist() and getIndexOfSelectedChecklist() methods, but
that doesn’t read as nicely.

The keyword @IBOutlet means that a property can refer to a user interface element
in Interface Builder, such as a label or button. Such properties are usually declared
weak and optional. Similarly, the keyword @IBAction is used for methods that will be
performed when the user interacts with the app.

There are three kinds of methods:

• instance methods

• class methods

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 26

• init methods

You know that a method is a function that belongs to an object. To call such a
method you first need to have an instance of the object:

let myInstance = MyObject() // create the object instance
. . .
myInstance.doSomething() // call the method

You can also make class methods, which can be used without an instance. In fact,
they are often used as “factory” methods, to create new instances:

class MyObject {
 . . .

 class func makeObject(text: String) -> MyObject {
 let m = MyObject()
 m.text = text
 return m
 }
}

let myInstance = MyObject.makeObject(text: "Hello world")

Init methods, or initializers, are used during the creation of new object instances.
Instead of the above factory method you might as well use a custom init method:

class MyObject {
 . . .

 init(text: String) {
 self.text = text
 }
}

let myInstance = MyObject(text: "Hello world")

The main purpose of an init method is to fill in the object’s instance variables. Any
instance variables or constants that do not have a value yet must be given one in
the init method.

Swift does not allow variables or constants to have no value (except for optionals),
and init is your last chance to make this happen.

Objects can have more than one init method; which one you use depends on the
circumstances.

A UITableViewController, for example, can be initialized either with init?(coder)
when automatically loaded from a storyboard, with init(nibName, bundle) when
manually loaded from a nib file, or with init(style) when constructed without a
storyboard or nib. Sometimes you use one, sometimes the other.

You can also provide a deinit method that gets called when the object is no longer

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 27

in use, just before it gets destroyed.

By the way, class isn’t the only way to define an object in Swift. It also supports
other types of objects such as structs and enums. You’ll learn more about these
later, so I won’t give away the whole plot here (no spoilers!).

Protocols
Besides objects you can also define protocols. A protocol is simply a list of method
names (and possibly properties as well):

protocol MyProtocol {
 func someMethod(value: Int)
 func anotherMethod() -> String
}

A protocol is like a job ad. It lists all the things that a candidate for a certain
position in your company should be able to do.

But the ad itself doesn’t do the job – it’s just words printed in the careers section of
the newspaper – so you need to hire an actual employee who can get the job done.
That would be an object.

Objects need to indicate that they conform to a protocol:

class MyObject: MyProtocol {
 . . .
}

This object now has to provide an implementation for the methods listed in the
protocol. (If not, it’s fired!)

From then on you can refer to this object as a MyObject (because that is its class
name) but also as a MyProtocol object:

var m1: MyObject = MyObject()
var m2: MyProtocol = MyObject()

To any part of the code using the m2 variable, it doesn’t matter that the object is
really a MyObject under the hood. The type of m2 is MyProtocol, not MyObject.

All your code sees is that m2 is some object conforming to MyProtocol, but it’s not
important what sort of object that is.

In other words, you don’t really care that your employee may also have another job
on the side, as long as it doesn’t interfere with the duties you’ve hired him for.

Protocols are often used to define delegates but they come in handy for other uses
as well, as you’ll find out later on.

This concludes the quick recap of what you’ve seen so far of the Swift language.
After all that theory, it’s time to write some code!

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 28

Getting GPS coordinates
In this section you’ll create the MyLocations project in Xcode and then use the Core
Location framework to find the latitude and longitude of the user’s location.

When you’re done with this section, the app will look like this:

The first screen of the app

I know it’s not very good looking yet, but you’ll fix that later. For now, it’s only
important that you can obtain the GPS coordinates and show them on the screen.

As always, you first make things work and then you make them look good.

➤ Fire up Xcode and make a new project. Choose the Tabbed Application
template.

Choosing the Tabbed Application template

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 29

➤ Fill in the options as follows:

• Product Name: MyLocations

• Organization Name: Your own name or the name of your company

• Organization Identifier: Your own identifier in reverse domain notation

• Language: Swift

• Devices: iPhone

• Include Unit Tests and Include UI Tests: unchecked

➤ Save the project.

If you run the app, it looks like this:

The app from the Tabbed Application template

The app has a tab bar along the bottom with two tabs: First and Second.

Even though it doesn’t do much yet, the app already employs three view
controllers:

1. its root controller is the UITabBarController that contains the tab bar and
performs the switching between the different screens;

2. the view controller for the First tab;

3. the view controller for the Second tab.

The two tabs each have their own view controller. By default the Xcode template
names them FirstViewController and SecondViewController.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 30

The storyboard looks like this:

The storyboard from the Tabbed Application template

I already had to zoom it out to fit the whole thing on my screen. Storyboards are
great but they sure take up a lot of space!

As before, you’ll be editing the storyboard using the iPhone SE dimensions, and
then later you’ll make the app work on the other iPhone models as well.

➤ In the View as: pane at the bottom, choose iPhone SE.

In this section you’ll be working with the first tab only. In the second half of the
tutorial you’ll create the screen for the second tab and add a third tab as well.

Let’s give FirstViewController a better name.

➤ In the project navigator, click FirstViewController.swift twice (but not too
quickly) and rename it to CurrentLocationViewController.swift.

➤ Open CurrentLocationViewController.swift and change the class line to:

class CurrentLocationViewController: UIViewController {

➤ Switch to Main.storyboard and select the view controller connected to the first
tab. In the Identity inspector, change the Class field from FirstViewController to
CurrentLocationViewController:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 31

Changing the class in Interface Builder

➤ Go into the Project Settings screen and de-select the Landscape Left and
Landscape Right settings under Deployment Info, Device Orientation. Now the
app is portrait-only.

The app only works in portrait

➤ Run the app again just to make sure everything still works.

Whenever I change how things are hooked up in the storyboard, I find it useful to
run the app and verify that the change was successful – it’s way too easy to forget
a step and you want to catch such mistakes right away.

As you’ve seen in the Checklists app, a view controller that sits inside a navigation
controller has a Navigation Item object that allows it to configure the navigation
bar. Tab bars work the same way. Each view controller that represents a tab has a
Tab Bar Item object.

➤ Select the Tab Bar Item object from the “First Scene” (this is the Current
Location View Controller) and go to the Attributes inspector. Change the Title to
Tag.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 32

Changing the title of the Tab Bar Item

Later on you’ll also set an image on the Tab Bar Item; it currently uses the default
image of a circle from the template.

You will now design the screen for this first tab. It gets two buttons and a few labels
that show the GPS coordinates and the street address. To save you some time,
you’ll add all the outlet properties in one go.

➤ Add the following to the class inside CurrentLocationViewController.swift:

@IBOutlet weak var messageLabel: UILabel!
@IBOutlet weak var latitudeLabel: UILabel!
@IBOutlet weak var longitudeLabel: UILabel!
@IBOutlet weak var addressLabel: UILabel!
@IBOutlet weak var tagButton: UIButton!
@IBOutlet weak var getButton: UIButton!

@IBAction func getLocation() {
 // do nothing yet
}

Design the UI to look as follows:

The design of the Current Location screen

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 33

➤ The (Message label) at the top should span the whole width of the screen.
You’ll use this label for status messages while the app is obtaining the GPS
coordinates. Set the Alignment attribute to centered and connect the label to the
messageLabel outlet.

➤ Make the (Latitude goes here) and (Longitude goes here) labels right-
aligned and connect them to the latitudeLabel and longitudeLabel outlets
respectively.

➤ The (Address goes here) label also spans the whole width of the screen and is
50 points high so it can fit two lines of text. Set its Lines attribute to 0 (that means
it can fit a variable number of lines). Connect this label to the addressLabel outlet.

➤ The Tag Location button doesn’t do anything yet but should be connected to the
tagButton outlet.

➤ Connect the Get My Location button to the getButton outlet, and its Touch Up
Inside event to the getLocation action.

➤ Run the app to see the new design in action.

So far, nothing special. With the exception of the tab bar this is stuff you’ve seen
and done before. Time to add something new: let’s play with Core Location!

Note: Because you’re initially designing for the iPhone SE screen size, it’s best
to use the iPhone SE Simulator to run the app. The app won’t look good yet on
the larger iPhone 6s, 7, and Plus simulators. You’ll fix this later in the tutorial.

Core Location
Most iOS-enabled devices have a way to let you know exactly where you are on the
globe, either through communication with GPS satellites or Wi-Fi and cell tower
triangulation. The Core Location framework puts that power into your own hands.

An app can ask Core Location for the user’s current latitude and longitude. For
devices with a compass it can also give the heading (you won’t be using that in this
tutorial). Core Location can also provide continuous location updates while you’re
on the move.

Getting a location from Core Location is pretty easy but there are some pitfalls that
you need to avoid. Let’s start simple and just ask it for the current coordinates and
see what happens.

➤ At the very top of CurrentLocationViewController.swift, add an import
statement:

import CoreLocation

That is all you have to do to add the Core Location framework to your project.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 34

Core Location, as so many other parts of the iOS SDK, works with a delegate, so
you should make the view controller conform to the CLLocationManagerDelegate
protocol.

➤ Add CLLocationManagerDelegate to the view controller’s class line:

class CurrentLocationViewController: UIViewController,
 CLLocationManagerDelegate {

(This goes all on a single line.)

➤ Also add a new property:

let locationManager = CLLocationManager()

The CLLocationManager is the object that will give you the GPS coordinates. You’re
putting the reference to this object in a constant (using let), not a variable (var).
Once you have created the location manager object, the value of locationManager
will never have to change.

The new CLLocationManager object doesn’t give out GPS coordinates right away. To
begin receiving coordinates, you have to call its startUpdatingLocation() method
first.

Unless you’re doing turn-by-turn navigation, you don’t want your app to
continuously receive GPS coordinates. That requires a lot of power and will quickly
drain the battery. For this app, you only turn on the location manager when you
want a location fix and turn it off again when you’ve received a usable location.

You’ll implement that logic in a minute (it’s more complex than you think it would
be). For now, you’re only interested in receiving something from Core Location, just
so you know that it works.

➤ Change the getLocation() action method to the following:

@IBAction func getLocation() {
 locationManager.delegate = self
 locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
 locationManager.startUpdatingLocation()
}

This method is hooked up to the Get My Location button. It tells the location
manager that the view controller is its delegate and that you want to receive
locations with an accuracy of up to ten meters. Then you start the location
manager. From that moment on the CLLocationManager object will send location
updates to its delegate, i.e. the view controller.

➤ Speaking of the delegate, add the following code too:

// MARK: - CLLocationManagerDelegate

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 35

func locationManager(_ manager: CLLocationManager,
 didFailWithError error: Error) {
 print("didFailWithError \(error)")
}

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 let newLocation = locations.last!
 print("didUpdateLocations \(newLocation)")
}

These are the delegate methods for the location manager. For the time being, you’ll
simply write a print() message to the debug area.

// MARK:
In the code above there is a comment line that starts with // MARK:. Such a
comment gives a hint to Xcode that you have organized your source file into neat
sections. You can see this from the Jump Bar:

The dash - makes Xcode draw a handy divider line. You can also use // TODO:
and // FIXME: and Xcode will put those into the Jump Bar popup too.

➤ Run the app in the Simulator and press the Get My Location button.

Whoops, nothing seems to happen. That’s because you need to ask for permission
to use the user’s location first.

➤ Add the following lines to the top of getLocation():

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 36

let authStatus = CLLocationManager.authorizationStatus()

if authStatus == .notDetermined {
 locationManager.requestWhenInUseAuthorization()
 return
}

This checks the current authorization status. If it is .notDetermined, meaning that
this app has not asked for permission yet, then the app will request “When In Use”
authorization. That allows the app to get location updates while it is open and the
user is interacting with it.

There is also “Always” authorization, which permits the app to check the user’s
location even when it is not active. That’s useful for a navigation app, for example.
For most apps, including MyLocations, when-in-use is what you want to ask for.

Just adding these lines of code is not enough. You also have to add a special key to
the app’s Info.plist.

➤ Open Info.plist from the project navigator. Right-click somewhere inside
Info.plist and choose Add Row from the menu.

Adding a new row to Info.plist

➤ For the key, type NSLocationWhenInUseUsageDescription (or choose
Privacy - Location When In Use Usage Description from the list).

➤ Type the following text in the Value column:

This app lets you keep track of interesting places. It needs access to the
GPS coordinates for your location.

This description tells the user what the app wants to use the location data for.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 37

Adding the new item to Info.plist

➤ Run the app again and press the Get My Location button.

Core Location will pop up the following alert, asking the user for permission:

Users have to allow your app to use their location

If a user denies the request with the Don’t Allow button, then Core Location will
never give your app location coordinates.

➤ Press the Don’t Allow button. Now press Get My Location again.

Xcode’s debug area should now show the following message:

didFailWithError Error Domain=kCLErrorDomain Code=1

This comes from the locationManager(didFailWithError) delegate method. It’s
telling you that the location manager wasn’t able to obtain a location.

The reason why is described by an Error object, which is the standard object that
the iOS SDK uses to convey error information. You’ll see it in many other places in
the SDK (there are plenty of places where things can go wrong!).

This Error object has a “domain” and a “code”. The domain in this case is
kCLErrorDomain meaning the error came from Core Location (CL). The code is 1,
also known by the symbolic name CLError.denied, which means the user did not
allow the app to obtain location information.

Note: The k prefix is often used by the iOS frameworks to signify that a name
represents a constant value (I guess whoever came up with this prefix thought

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 38

it was spelled “konstant”). This is an old convention and you won’t see it used
much in new frameworks or in Swift code, but it still pops up here and there.

➤ Stop the app from within Xcode and run it again.

When you press the Get My Location button, the app does not ask for permission
anymore but immediately gives you the same error message.

Let’s make this a bit more user-friendly, because a normal user would never see
that print().

➤ Add the following method to CurrentLocationViewController.swift:

func showLocationServicesDeniedAlert() {
 let alert = UIAlertController(title: "Location Services Disabled",
 message:
 "Please enable location services for this app in Settings.",
 preferredStyle: .alert)

 let okAction = UIAlertAction(title: "OK", style: .default,
 handler: nil)
 alert.addAction(okAction)

 present(alert, animated: true, completion: nil)
}

This pops up an alert with a helpful hint. This app is pretty useless without access
to the user’s location, so it should encourage the user to enable location services.
It’s not necessarily the user of the app who has denied access to the location data;
a systems administrator or parent may have restricted location access.

➤ To show this alert, add the following lines to getLocation(), just before you set
the locationManager’s delegate:

if authStatus == .denied || authStatus == .restricted {
 showLocationServicesDeniedAlert()
 return
}

This shows the alert if the authorization status is denied or restricted. Notice the
use of || here, the “logical or” operator. showLocationServicesDeniedAlert() will be
called if either of those two conditions is true.

➤ Try it out. Run the app and tap Get My Location. You should now get the Location
Services Disabled alert:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 39

The alert that pops up when location services are not available

Fortunately, users can change their minds and enable location services for your app
again. This is done from the iPhone’s Settings app.

➤ Open the Settings app in the Simulator and go to Privacy → Location
Services.

Location Services in the Settings app

➤ Click MyLocations and then While Using the App to enable location services
again. Switch back to the app (or run it again from within Xcode) and press the Get
My Location button.

When I tried this, the following message appeared in Xcode’s debug area:

didFailWithError Error Domain=kCLErrorDomain Code=0

Again there is an error message but with a different code, 0. This is “location
unknown” which means Core Location was unable to obtain a location for some
reason.

That is not so strange, as you’re running this from the Simulator, which obviously
does not have a real GPS. Your Mac may have a way to obtain location information

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 40

through Wi-Fi but this is not built into the Simulator. Fortunately, there is a way to
fake it!

➤ With the app running, from the Simulator’s menu bar at the top of the screen,
choose Debug → Location → Apple.

The Simulator’s Location menu

You now should see messages like these in the debug area:

didUpdateLocations <+37.33259552,-122.03031802> +/- 500.00m (speed -1.00
mps / course -1.00) @ 7/19/16 4:03:52 PM Central European Summer Time

didUpdateLocations <+37.33241023,-122.03051088> +/- 65.00m (speed -1.00
mps / course -1.00) @ 7/19/16 4:03:54 PM Central European Summer Time

didUpdateLocations <+37.33233141,-122.03121860> +/- 50.00m (speed -1.00
mps / course -1.00) @ 7/19/16 4:04:01 PM Central European Summer Time

didUpdateLocations <+37.33233141,-122.03121860> +/- 30.00m (speed 0.00
mps / course -1.00) @ 7/19/16 4:04:03 PM Central European Summer Time

didUpdateLocations <+37.33233141,-122.03121860> +/- 10.00m (speed 0.00
mps / course -1.00) @ 7/19/16 4:04:05 PM Central European Summer Time

It keeps going on and on, giving the app a new location every second or so,
although after a short while the latitude and longitude readings do not change
anymore. These particular coordinates point at the Apple headquarters in
Cupertino, California.

Look carefully at the coordinates the app is receiving. The first one says “+/-
500.00m”, the second one “+/- 65.00m”, the third “+/- 50.00m”. This number
keeps getting smaller and smaller until it stops at about “+/- 5.00m”.

This is the accuracy of the measurement, expressed in meters. What you see is the
Simulator imitating what happens when you ask for a location on a real device.

If you go out with an iPhone and try to obtain location information, the iPhone uses
three different ways to find your coordinates. It has onboard cell, Wi-Fi, and GPS

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 41

radios that each give it location information in more detail:

• Cell tower triangulation will always work if there is a signal but it’s not very
precise.

• Wi-Fi positioning works better but that is only available if there are known Wi-Fi
routers nearby. This system uses a big database that contains the locations of
wireless networking equipment.

• The very best results come from the GPS (Global Positioning System) but that
attempts a satellite communication and is therefore the slowest of the three. It
also won’t work very well indoors.

So your device has several ways of obtaining location data, ranging from fast but
inaccurate (cell towers, Wi-Fi) to accurate but slow (GPS). And none of these are
guaranteed to work. Some devices don’t even have a GPS or cell radio at all and
have to rely on just the Wi-Fi. Suddenly obtaining a location seems a lot trickier.

Fortunately for us, Core Location does all of the hard work of turning the location
readings from its various sources into a useful number. Instead of making you wait
for the definitive results from the GPS (which may never come), Core Location
sends location data to the app as soon as it gets it, and then follows up with more
and more accurate readings.

Exercise. If you have an iPhone, iPod touch or iPad nearby, try the app on your
device and see what kind of readings it gives you. If you have more than one
device, try the app on all of them and note the differences.

Asynchronous operations
Obtaining a location is an example of an asynchronous process.

Sometimes apps need to do things that may take a while. After you start an
operation you have to wait until it gives you the results. If you’re unlucky, those
results may never come at all!

In the case of Core Location, it can take a second or two before you get the first
location reading and then quite a few seconds more to get coordinates that are
accurate enough for your app to use.

Asynchronous means that after you start such an operation, your app will continue
on its merry way. The user interface is still responsive, new events are being sent
and handled, and the user can still tap on things.

The asynchronous process is said to be operating “in the background”. As soon as

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 42

the operation is done, the app is notified through a delegate so that it can process
the results.

The opposite is synchronous (without the a). If you start an operation that is
synchronous, the app won’t continue until that operation is done. In effect, it
freezes up.

In the case of CLLocationManager that would cause a big problem: your app would
be totally unresponsive for the couple of seconds that it takes to get a location fix.
Those kinds of “blocking” operations are often a bad experience for the user.

For example, MyLocations has a tab bar at the bottom. If the app would block while
getting the location, switching to another tab during that time would have no effect.
The user expects to always be able to change tabs but now it appears that the app
is frozen, or worse, has crashed.

The designers of iOS decided that such behavior is unacceptable and therefore
operations that take longer than a fraction of a second should be performed in an
asynchronous manner.

In the next tutorial you’ll see more asynchronous processing in action when we talk
about network connections and downloading stuff from the internet.

By the way, iOS has something called the “watchdog timer”. If your app is
unresponsive for too long, then under certain circumstances the watchdog timer will
kill your app without mercy – so don’t do that!

The take-away is this: Any operation that takes long enough to be noticeable by the
user should be done asynchronously, in the background.

Putting the coordinates on the screen
The locationManager(didUpdateLocations) delegate method gives you an array of
CLLocation objects that contain the current latitude and longitude coordinates of
the user. (These objects also have some additional information, such as the altitude
and speed, but you don’t use those in this app.)

You’ll take the last CLLocation object from the array – because that is the most
recent update – and display its coordinates in the labels that you added to the
screen earlier.

➤ Add a new instance variable to CurrentLocationViewController.swift:

var location: CLLocation?

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 43

You will store the user’s current location in this variable.

This needs to be an optional, because it is possible to not have a location, for
example when you’re stranded out in the Sahara desert somewhere and there is
not a cell tower or GPS satellite in sight (it happens).

But even when everything works as it should, the value of location will still be nil
until Core Location reports back with a valid CLLocation object, which as you’ve
seen may take a few seconds. So an optional it is.

➤ Change the locationManager(didUpdateLocations) method to:

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 let newLocation = locations.last!
 print("didUpdateLocations \(newLocation)")

 location = newLocation
 updateLabels()
}

You store the CLLocation object that you get from the location manager into the
instance variable and call a new updateLabels() method.

Keep the print() in there because it’s handy for debugging.

➤ Add the updateLabels() method below:

func updateLabels() {
 if let location = location {
 latitudeLabel.text =
 String(format: "%.8f", location.coordinate.latitude)
 longitudeLabel.text =
 String(format: "%.8f", location.coordinate.longitude)
 tagButton.isHidden = false
 messageLabel.text = ""

 } else {
 latitudeLabel.text = ""
 longitudeLabel.text = ""
 addressLabel.text = ""
 tagButton.isHidden = true
 messageLabel.text = "Tap 'Get My Location' to Start"
 }
}

Because the location instance variable is an optional, you use the if let syntax to
unwrap it.

Note that it’s OK for the unwrapped variable to have the same name as the optional
– here they are both called location. Inside the if-statement, location now refers
to an actual CLLocation object that can never be nil.

If there is a valid location object, you convert the latitude and longitude, which are

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 44

values with type Double, into strings and put them into the labels.

You’ve seen string interpolation before to put values into strings, so why doesn’t
this code simply do the following?

latitudeLabel.text = "\(location.coordinate.latitude)"

That would certainly work, but it doesn’t give you any control over how the latitude
value appears. For this app, you want both latitude and longitude to be shown with
8 digits behind the decimal point.

For that sort of control, you need to use a so-called format string.

Like string interpolation, a format string uses placeholders that will be replaced by
the actual value during runtime. These placeholders, or format specifiers, can be
quite intricate.

To create the text for the latitude label you do this:

String(format: "%.8f", location.coordinate.latitude)

This creates a new String object using the format string "%.8f", and the value to
replace in that string, location.coordinate.latitude.

Placeholders always start with a % percent sign. Examples of common placeholders
are: %d for integer values, %f for decimals, and %@ for arbitrary objects.

Format strings are very common in Objective-C code but less so in Swift because
string interpolation is much simpler, but also less powerful.

The %.8f format specifier does the same thing as %f: it takes a decimal number and
puts it in the string. The .8 means that there should always be 8 digits behind the
decimal point.

➤ Run the app, select a location to simulate from the Simulator’s Debug menu and
tap the Get My Location button. You’ll now see the latitude and longitude appear on
the screen.

The app shows the GPS coordinates

When the app starts up it has no location object (location is still nil) and therefore
ought to show the "Tap 'Get My Location' to Start" message at the top as a hint to

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 45

the user. But it doesn’t do that yet – the app doesn’t call updateLabels() until it
receives the first coordinates.

➤ To fix this, also call updateLabels() from viewDidLoad():

override func viewDidLoad() {
 super.viewDidLoad()
 updateLabels()
}

➤ Run the app. Initially, the screen should now say, Tap ‘Get My Location’ to Start,
and the latitude and longitude labels are empty.

What the app looks like when you start it

Handling errors
Getting GPS coordinates is error-prone. You may be somewhere where there is no
clear line-of-sight to the sky (such as inside or in an area with lots of tall buildings),
blocking your GPS signal.

There may not be many Wi-Fi routers around you, or they haven’t been catalogued
yet, so the Wi-Fi radio isn’t much help getting a location fix either.

And of course your cell signal is so weak that triangulating your position doesn’t
offer particularly good results either.

All of that is assuming your device actually has a GPS or cell radio. I just went out
with my iPod touch to capture coordinates and make some pictures for this tutorial.
In the city center it was unable to obtain a location fix. My iPhone did better but it
still wasn’t ideal.

The moral of this story is that your location-aware apps had better know how to
deal with errors and bad readings. There are no guarantees that you’ll be able to
get a location fix, and if you do then it might still take a few seconds.

This is where software meets the real world. You should add some error handling
code to the app to let users know about problems getting those coordinates.

➤ Add these two instance variables to CurrentLocationViewController.swift:

var updatingLocation = false

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 46

var lastLocationError: Error?

➤ Change the locationManager(didFailWithError) delegate method to the
following:

func locationManager(_ manager: CLLocationManager,
 didFailWithError error: Error) {
 print("didFailWithError \(error)")

 if (error as NSError).code == CLError.locationUnknown.rawValue {
 return
 }

 lastLocationError = error

 stopLocationManager()
 updateLabels()
}

The location manager may report errors for a variety of scenarios. You can look at
the code property of the Error object to find out what type of error you’re dealing
with. (You do need to cast to NSError first. This is the subclass of Error that actually
contains the code property.)

Some of the possible Core Location errors:

• CLError.locationUnknown - The location is currently unknown, but Core Location
will keep trying.

• CLError.denied - The user declined the app to use location services.

• CLError.network - There was a network-related error.

There are more (having to do with the compass and geocoding), but you get the
point. Lots of reasons for things to go wrong!

Note: These error codes are defined in the CLError enumeration. Recall that
an enumeration, or enum, is a list of values and names for these values.

The error codes used by Core Location have simple integer values. Rather than
using the values 0, 1, 2 and so on in your program, Core Location has given
them symbolic names using the CLError enum. That makes these codes easier
to understand and you’re less likely to pick the wrong one.

To convert these names back to an integer value you ask for the rawValue.

In your updated locationManager(didFailWithError), you do:

if (error as NSError).code == CLError.locationUnknown.rawValue {
 return
}

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 47

The CLError.locationUnknown error means the location manager was unable to
obtain a location right now, but that doesn’t mean all is lost. It might just need
another second or so to get an uplink to the GPS satellite. In the mean time it’s
letting you know that, for now, it could not get any location information.

When you get this error, you will simply keep trying until you do find a location or
receive a more serious error.

In the case of such a more serious error, you store the error object into a new
instance variable, lastLocationError:

lastLocationError = error

That way you can look up later what kind of error you were dealing with. This
comes in useful in updateLabels(). You’ll be extending that method shortly to show
the error to the user because you don’t want to leave them in the dark about such
things.

Exercise. Can you explain why lastLocationError is an optional?

Answer: When there is no error, lastLocationError will not have a value. In other
words it can be nil, and variables that can be nil must be optionals in Swift.

Finally, locationManager(didFailWithError) does:

stopLocationManager()
updateLabels()

The stopLocationManager() method is new. If obtaining a location appears to be
impossible for wherever the user currently is on the globe, then you’ll tell the
location manager to stop. To conserve battery power the app should power down
the iPhone’s radios as soon as it doesn’t need them anymore.

If this was a turn-by-turn navigation app, you’d keep the location manager running
even in the case of a network error, because who knows, a couple of meters ahead
you might get a valid location.

For this app the user will simply have to press the Get My Location button again if
they want to try in another spot.

➤ Add the stopLocationManager() method:

func stopLocationManager() {
 if updatingLocation {
 locationManager.stopUpdatingLocation()
 locationManager.delegate = nil
 updatingLocation = false
 }
}

There’s an if-statement in here that checks whether the boolean instance variable
updatingLocation is true or false. If it is false, then the location manager wasn’t

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 48

currently active and there’s no need to stop it.

The reason for having this updatingLocation variable is that you are going to
change the appearance of the Get My Location button and the status message label
when the app is trying to obtain a location fix, to let the user know the app is
working on it.

➤ Put some extra code in updateLabels() to show the error message:

func updateLabels() {
 if let location = location {
 . . .

 } else {
 latitudeLabel.text = ""
 longitudeLabel.text = ""
 addressLabel.text = ""
 tagButton.isHidden = true

 // The new code starts here:
 let statusMessage: String
 if let error = lastLocationError as? NSError {
 if error.domain == kCLErrorDomain &&
 error.code == CLError.denied.rawValue {
 statusMessage = "Location Services Disabled"
 } else {
 statusMessage = "Error Getting Location"
 }
 } else if !CLLocationManager.locationServicesEnabled() {
 statusMessage = "Location Services Disabled"
 } else if updatingLocation {
 statusMessage = "Searching..."
 } else {
 statusMessage = "Tap 'Get My Location' to Start"
 }

 messageLabel.text = statusMessage
 }
}

The new code determines what to put in the messageLabel at the top of the screen.
It uses a bunch of if-statements to figure out what the current status of the app is.

If the location manager gave an error, the label will show an error message.

The first error it checks for is CLError.denied (in the error domain kCLErrorDomain,
which means Core Location errors). In that case the user has not given this app
permission to use the location services. That sort of defeats the purpose of this app
but it can happen and you have to check for it anyway.

If the error code is something else then you simply say “Error Getting Location” as
this usually means there was no way of obtaining a location fix.

Even if there was no error it might still be impossible to get location coordinates if
the user disabled Location Services completely on her device (instead of just for

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 49

this app). You check for that situation with the locationServicesEnabled() method
of CLLocationManager.

Suppose there were no errors and everything works fine, then the status label will
say “Searching...” before the first location object has been received.

If your device can obtain the location fix quickly then this text will be visible only
for a fraction of a second, but often it might take a short while to get that first
location fix. No one likes waiting, so it’s nice to let the user know that the app is
actively looking up her location. That is what you’re using the updatingLocation
boolean for.

Note: You put all this logic into a single method because that makes it easy to
change the screen when something has changed. Received a location? Simply
call updateLabels() to refresh the contents of the screen. Received an error?
Let updateLabels() sort it out…

➤ Also add the startLocationManager() method. I suggest you put it right above
stopLocationManager(), to keep related functionality together:

func startLocationManager() {
 if CLLocationManager.locationServicesEnabled() {
 locationManager.delegate = self
 locationManager.desiredAccuracy =
 kCLLocationAccuracyNearestTenMeters
 locationManager.startUpdatingLocation()
 updatingLocation = true
 }
}

Starting the location manager used to happen in the getLocation() action method.
Because you now have a stopLocationManager() method, it makes sense to move
that code into a method of its own, startLocationManager(), just to keep things
symmetrical.

The only difference with before is that this checks whether the location services are
enabled. You also set the variable updatingLocation to true.

➤ Change getLocation() to:

@IBAction func getLocation() {
 let authStatus = CLLocationManager.authorizationStatus()

 if authStatus == .notDetermined {
 . . .
 }

 if authStatus == .denied || authStatus == .restricted {
 . . .
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 50

 startLocationManager()
 updateLabels()
}

There is one more small change to make. Suppose there was an error and no
location could be obtained, but then you walk around for a bit and a valid location
comes in. In that case it’s a good idea to wipe the old error code.

➤ At the bottom of locationManager(didUpdateLocations), add the following line
just before calling updateLabels():

lastLocationError = nil

This clears out the old error state. After receiving a valid coordinate, any previous
error you may have encountered is no longer applicable.

➤ Run the app. While the app is waiting for incoming coordinates, the label at the
top should say “Searching...” until it finds a valid coordinate or encounters a fatal
error.

The app is waiting to receive GPS coordinates

Play around with the Simulator’s location settings for a while and see what happens
when you choose different locations.

Note that changing the Simulator’s location to None isn’t an error anymore. This
still returns the .locationUnknown error code but you ignore that because it’s not a
fatal error.

Tip: You can also simulate locations from within Xcode. If your app uses Core
Location, the bar at the top of the debug area gets an arrow icon. Click on that icon
to change the simulated location:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 51

Simulating locations from within the Xcode debugger

Ideally you should not just test in the Simulator but also on your device, as you’re
more likely to encounter real errors that way.

Improving the results
Cool, you know how to obtain a CLLocation object from Core Location and you’re
able to handle errors. Now what?

Well, here’s the thing: you saw in the Simulator that Core Location keeps giving you
new location objects over and over, even though the coordinates may not have
changed. That’s because the user could be on the move, in which case their GPS
coordinates do change.

However, you’re not building a navigation app so for the purposes of this tutorial
you just want to get a location that is accurate enough and then you can tell the
location manager to stop sending updates.

This is important because getting location updates costs a lot of battery power as
the device needs to keep its GPS/Wi-Fi/cell radios powered up for this. This app
doesn’t need to ask for GPS coordinates all the time, so it should stop when the
location is accurate enough.

The problem is that you can’t always get the accuracy you want, so you have to
detect this. When the last couple of coordinates you received aren’t increasing in
accuracy then this is probably as good as it’s going to get and you should let the
radio power down.

➤ Change locationManager(didUpdateLocations) to the following:

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 let newLocation = locations.last!
 print("didUpdateLocations \(newLocation)")

 // 1
 if newLocation.timestamp.timeIntervalSinceNow < -5 {
 return
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 52

 // 2
 if newLocation.horizontalAccuracy < 0 {
 return
 }

 // 3
 if location == nil ||
 location!.horizontalAccuracy > newLocation.horizontalAccuracy {

 // 4
 lastLocationError = nil
 location = newLocation
 updateLabels()

 // 5
 if newLocation.horizontalAccuracy <=
 locationManager.desiredAccuracy {
 print("*** We're done!")
 stopLocationManager()
 }
 }
}

Let’s take these changes one-by-one:

1. If the time at which the given location object was determined is too long ago (5
seconds in this case), then this is a so-called cached result.

Instead of returning a new location fix, the location manager may initially give
you the most recently found location under the assumption that you might not
have moved much in the last few seconds (obviously this does not take into
consideration people with jet packs).

You’ll simply ignore these cached locations if they are too old.

2. To determine whether new readings are more accurate than previous ones
you’re going to be using the horizontalAccuracy property of the location object.
However, sometimes locations may have a horizontalAccuracy that is less than
0, in which case these measurements are invalid and you should ignore them.

3. This is where you determine if the new reading is more useful than the previous
one. Generally speaking, Core Location starts out with a fairly inaccurate
reading and then gives you more and more accurate ones as time passes.
However, there are no guarantees so you cannot assume that the next reading
truly is always more accurate.

Note that a larger accuracy value means less accurate – after all, accurate up to
100 meters is worse than accurate up to 10 meters. That’s why you check
whether the previous reading, location!.horizontalAccuracy, is greater than
the new reading, newLocation.horizontalAccuracy.

You also check for location == nil. Recall that location is the optional instance
variable that stores the CLLocation object that you obtained in a previous call to

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 53

“didUpdateLocations”. If location is nil then this is the very first location
update you’re receiving and in that case you should also continue.

So if this is the very first location reading (location is nil) or the new location
is more accurate than the previous reading, you continue to step 4. Otherwise
you ignore this location update.

4. You’ve seen this before. It clears out any previous error if there was one and
stores the new CLLocation object into the location variable.

5. If the new location’s accuracy is equal to or better than the desired accuracy,
you can call it a day and stop asking the location manager for updates. When
you started the location manager in startLocationManager(), you set the
desired accuracy to 10 meters (kCLLocationAccuracyNearestTenMeters), which is
good enough for this app.

Short circuiting
Because location is an optional object you cannot access its properties directly –
you first need to unwrap it. You could do that with if let, but if you’re sure that
the optional is not nil you can also force unwrap it with !.

That’s what you are doing in this line:

 if location == nil ||
 location!.horizontalAccuracy > newLocation.horizontalAccuracy {

You wrote location!.horizontalAccuracy with an exclamation point instead of just
location.horizontalAccuracy.

But what if location == nil, won’t the force unwrapping fail then? Not in this case,
because it is never performed.

The || operator (logical or) tests whether either of the two conditions is true. If the
first one is true (location is nil), it will ignore the second condition. That’s called
short circuiting. There is no need for the app to check the second condition if the
first one is already true.

So the app will only look at location!.horizontalAccuracy when location is
guaranteed to be non-nil. Blows your mind, eh?

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 54

➤ Run the app. First set the Simulator’s location to None, then press Get My
Location. The screen now says “Searching...”

➤ Switch to location Apple (but don’t press Get My Location again). After a brief
moment, the screen is updated with GPS coordinates as they come in.

If you follow along in the debug area, you’ll get about 10 location updates before it
says “*** We’re done!” and the location updates stop.

Note: It’s possible the above steps won’t work for you. If the screen does not
say “Searching…” but shows an old set of coordinates instead, then the
Simulator is holding on to old location data. This seems to happen when you
pick a location from within Xcode (using the arrow in the debug area) instead
of the Simulator’s Debug menu.

The quickest way to fix this is to quit the Simulator and run the app again
(which launches a new Simulator). If you can’t get it to work, no worries, it’s
not that important. Just be aware that the Simulator can be finicky sometimes.

You as the developer can tell from the debug area when the location updates stop,
but obviously the user won’t see this.

The Tag Location button becomes visible as soon as the first location is received so
the user can start saving this location to their library right away, but at this point
the location may not be accurate enough yet. So it’s nice to show the user when the
app has found the most accurate location.

To make this clearer, you are going to toggle the Get My Location button to say
“Stop” when the location grabbing is active and switch it back to “Get My Location”
when it’s done. That gives a nice visual clue to the user. Later in this lesson you’ll
also show an animated activity spinner that makes this even more obvious.

To change the state of this button, you’ll add a configureGetButton() method.

➤ Add the following method to CurrentLocationViewController.swift:

func configureGetButton() {
 if updatingLocation {
 getButton.setTitle("Stop", for: .normal)
 } else {
 getButton.setTitle("Get My Location", for: .normal)
 }
}

It’s quite simple: if the app is currently updating the location then the button’s title
becomes Stop, otherwise it is Get My Location.

➤ Call configureGetButton() from the following places:

override func viewDidLoad() {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 55

 super.viewDidLoad()
 updateLabels()
 configureGetButton()
}

@IBAction func getLocation() {
 . . .
 startLocationManager()
 updateLabels()
 configureGetButton()
}

func locationManager(_ manager: CLLocationManager,
 didFailWithError error: Error) {
 . . .
 updateLabels()
 configureGetButton()
}

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 . . .
 if newLocation.horizontalAccuracy <=
 locationManager.desiredAccuracy {
 print("*** We're done!")
 stopLocationManager()
 configureGetButton()
 }
 }
}

Anywhere you did updateLabels(), you’re now also calling configureGetButton(). In
locationManager(didUpdateLocations) you only call it when you’re done.

➤ Run the app again and perform the same test as before. The button changes to
Stop when you press it. When there are no more location updates, it switches back.

The stop button

When a button says “Stop” you naturally expect to be able to press it so you can
interrupt the location updates. This is especially so when you’re not getting any
coordinates at all. Eventually Core Location may give an error but as a user you
may not want to wait for that.

Currently, however, pressing Stop doesn’t stop anything. You have to change

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 56

getLocation() for this, as any taps on the button call this method.

➤ In getLocation(), replace the call to startLocationManager() with the following:

if updatingLocation {
 stopLocationManager()
} else {
 location = nil
 lastLocationError = nil
 startLocationManager()
}

Again you’re using the updatingLocation flag to determine what state the app is in.

If the button is pressed while the app is already doing the location fetching, you
stop the location manager.

Note that you also clear out the old location and error objects before you start
looking for a new location.

➤ Run the app. Now pressing the Stop button will put an end to the location
updates. You should see no more updates in the debug area after you press Stop.

Note: If the Stop button doesn’t appear long enough for you to click it, set the
location back to None first, tap Get My Location a few times, and then select
the Apple location again.

Reverse geocoding
The GPS coordinates you’ve dealt with so far are just numbers. The coordinates
37.33240904, -122.03051218 don’t really mean that much, but the address 1
Infinite Loop in Cupertino, California does.

Using a process known as reverse geocoding, you can turn that set of coordinates
into a human-readable address. (Regular or “forward” geocoding does the opposite:
it turns an address into GPS coordinates. You can do both with the iOS SDK, but in
this tutorial you only do the reverse one.)

You’ll use the CLGeocoder object to turn the location data into a human-readable
address and then display that address on the screen in the addressLabel outlet.

It’s quite easy to do this but there are some rules. You’re not supposed to send out
a ton of these reverse geocoding requests at the same time. The process of reverse
geocoding takes place on a server hosted by Apple and it costs them bandwidth and
processor time to handle these requests. If you flood their servers with requests,
Apple won’t be happy.

The MyLocations app is only supposed to be used occasionally, so its users won’t be
spamming the Apple servers but you should still limit the geocoding requests to one
at a time, and once for every unique location. After all, it makes no sense to

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 57

reverse geocode the same set of coordinates over and over.

Reverse geocoding needs an active internet connection and anything you can do to
prevent unnecessary use of the iPhone’s radios is a good thing for your users.

➤ Add the following properties to CurrentLocationViewController.swift:

let geocoder = CLGeocoder()
var placemark: CLPlacemark?
var performingReverseGeocoding = false
var lastGeocodingError: Error?

These mirror what you did for the location manager. CLGeocoder is the object that
will perform the geocoding and CLPlacemark is the object that contains the address
results.

The placemark variable needs to be an optional because it will have no value when
there is no location yet, or when the location doesn’t correspond to a street address
(I don’t think it will respond with “Sahara desert, Africa” but to be honest, I haven’t
been there to try).

You set performingReverseGeocoding to true when a geocoding operation is taking
place, and lastGeocodingError will contain an Error object if something went wrong
(or nil if there is no error).

➤ You’ll put the geocoder to work in locationManager(didUpdateLocations):

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 . . .
 if location == nil ||
 location!.horizontalAccuracy > newLocation.horizontalAccuracy {
 . . .

 if newLocation.horizontalAccuracy <=
 locationManager.desiredAccuracy {
 print("*** We're done!")
 stopLocationManager()
 configureGetButton()
 }

 // The new code begins here:
 if !performingReverseGeocoding {
 print("*** Going to geocode")

 performingReverseGeocoding = true

 geocoder.reverseGeocodeLocation(newLocation, completionHandler: {
 placemarks, error in

 print("*** Found placemarks: \(placemarks), error: \(error)")
 })
 }
 // End of the new code
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 58

}

The app should only perform a single reverse geocoding request at a time, so first
you check whether it is not busy yet by looking at the performingReverseGeocoding
variable. Then you start the geocoder.

The code looks straightforward enough, except… what is that completionHandler
thing!?

Unlike the location manager, CLGeocoder does not use a delegate to tell you about
the result, but something called a closure.

A closure is a block of code, much like a method or a function, that is written inline
instead of in a separate method. The code inside a closure is usually not executed
immediately but it is stored somewhere and performed at some later point.

Closures are an important Swift feature and you can expect to see them all over the
place. (For Objective-C programmers, a closure is similar to a “block”.)

Currently the closure contains just a print() – so you can see what’s going on –
but soon you’ll add more code to it.

Unlike the rest of the code in the locationManager(didUpdateLocations) method,
the code in this closure is not performed right away. After all, you can only print the
geocoding results once the geocoding completes (which may be several seconds
later).

The closure is kept for later by the CLGeocoder object and is only performed after
CLGeocoder finds an address or encounters an error.

So why does CLGeocoder use a closure instead of a delegate?

The problem with using a delegate to provide feedback is that you need to write
one or more separate methods. For example, for CLLocationManager those are the
locationManager(didUpdateLocations) and locationManager(didFailWithError)
methods.

By making different methods you move the code that deals with the response away
from the code that makes the request. With closures, on the other hand, you can
put that handling code in the same place. That makes the code more compact and
easier to read. (Some APIs do both and you have a choice between using a closure
or becoming a delegate.)

So when you write,

geocoder.reverseGeocodeLocation(newLocation, completionHandler: {
 placemarks, error in
 // put your statements here
}

you’re telling the CLGeocoder object that you want to reverse geocode the location,

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 59

and that the code in the block following completionHandler: should be executed as
soon as the geocoding is completed.

The closure itself is:

{ placemarks, error in
 // put your statements here
}

The things before the in keyword – placemarks and error – are the parameters for
this closure and they work just like parameters for a method or a function.

When the geocoder finds a result for the location object that you gave it, it invokes
the closure and executes the statements within. The placemarks parameter will
contain an array of CLPlacemark objects that describe the address information, and
the error variable contains an error message in case something went wrong.

Just to rub it in: the statements in the closure are not executed right away when
locationManager(didUpdateLocations) is called. Instead, the closure and everything
inside it is given to CLGeocoder, which keeps it until later when it has performed the
reverse geocoding operation. Only then will it execute the code from the closure.

It’s the exact same principle as using delegate methods, except you’re not putting
the code into a separate method but in a closure.

It’s OK if closures have got you scratching your head right now. You’ll see them
used many more times in this tutorial and the next.

➤ Run the app and pick a location. As soon as the first location is found, you can
see in the debug area that the reverse geocoder kicks in (give it a second or two):

didUpdateLocations <+37.33240754,-122.03047460> +/- 65.00m (speed -1.00
mps / course -1.00) @ 7/19/16, 1:43:25 PM Central European Summer Time

didUpdateLocations <+37.33233141,-122.03121860> +/- 50.00m (speed -1.00
mps / course -1.00) @ 7/19/16, 1:43:30 PM Central European Summer Time

*** Going to geocode
*** Found placemarks: Optional([Apple Inc., Apple Inc., Cupertino, CA
95014, United States @ <+37.33202890,-122.02956600> +/- 100.00m, region
CLCircularRegion (identifier:'<+37.33214710,-122.03128175> radius
368.39', center:<+37.33214710,-122.03128175>, radius:368.39m)]), error:
nil

If you choose the Apple location you’ll see that some location readings are
duplicates; the geocoder only does the first of those. Only when the accuracy of the
reading improves does the app reverse geocode again. Nice!

Note: Several readers that reported that if you are in China and are trying to
reverse geocode an address that is outside of China, you may get an error and
placemarks will be nil. Try a location inside China instead.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 60

➤ Add the following code to the closure, directly below the print() statement:

self.lastGeocodingError = error
if error == nil, let p = placemarks, !p.isEmpty {
 self.placemark = p.last!
} else {
 self.placemark = nil
}

self.performingReverseGeocoding = false
self.updateLabels()

Just as with the location manager, you store the error object so you can refer to it
later, although you use a different instance variable this time, lastGeocodingError.

The next line does something you haven’t seen before:

if error == nil, let p = placemarks, !p.isEmpty {

You know that if let is used to unwrap optionals. Here, placemarks is an optional
so it needs be unwrapped before you can use it or you risk crashing the app when
placemarks is nil. The unwrapped placemarks array gets the temporary name p.

The !p.isEmpty bit says that we should only enter this if-statement if the array of
placemark objects is not empty.

You should read this line as:

if there’s no error and the unwrapped placemarks array is not empty {

Of course, Swift doesn’t speak English so you have to express this in terms that
Swift understands.

You could also have written this as three different, nested if-statements:

if error == nil {
 if let p = placemarks {
 if !p.isEmpty {

But it’s just as easy to combine all of these conditions into a single if.

You’re doing a bit of defensive programming here: you specifically check first
whether the array has any objects in it. If there is no error then it should have at
least one object, but you’re not going to trust that it always will. Good developers
are suspicious!

If all three conditions are met – there is no error, the placemarks array is not nil,
and there is at least one CLPlacemark inside this array – then you take the last of
those CLPlacemark objects:

 self.placemark = p.last!

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 61

The last property refers to the last item from an array. It’s an optional because
there is no such item if the array is empty. As alternative you can also write
placemarks[placemarks.count - 1] but that’s not as tidy.

Usually there will be only one CLPlacemark object in the array but there is the odd
situation where one location coordinate may refer to more than one address. This
app can only handle one address at a time, so you’ll just pick the last one (which
usually is the only one).

If there was an error during geocoding, you set self.placemark to nil. Note that
you did not do that for the locations. If there was an error there, you kept the
previous location object because it may actually be correct (or good enough) and
it’s better than nothing. But for the address that makes less sense.

You don’t want to show an old address, only the address that corresponds to the
current location or no address at all.

In mobile development, nothing is guaranteed. You may get coordinates back or
you may not, and if you do, they may not be very accurate. The reverse geocoding
will probably succeed if there is some type of network connection available, but you
also need to be prepared to handle the case where there is none.

And remember, not all GPS coordinates correspond to actual street addresses
(there is no corner of 52nd and Broadway in the Sahara desert).

Note: Did you notice that inside the completionHandler closure you used self
to refer to the view controller’s instance variables and methods? This is a Swift
requirement.

Closures are said to capture all the variables they use and self is one of them.
You may immediately forget about that; just know that Swift requires that all
captured variables are explicitly mentioned.

As you’ve seen, outside a closure you can use self to refer to instance
variables and methods, but it’s not a requirement. However, it is a compiler
error to leave out self inside a closure, so you don’t have much choice there.

Let’s make the address visible to the user as well.

➤ Change updateLabels() to:

func updateLabels() {
 if let location = location {
 . . .
 if let placemark = placemark {
 addressLabel.text = string(from: placemark)
 } else if performingReverseGeocoding {
 addressLabel.text = "Searching for Address..."
 } else if lastGeocodingError != nil {
 addressLabel.text = "Error Finding Address"
 } else {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 62

 addressLabel.text = "No Address Found"
 }
 } else {
 . . .
 }
}

Because you only do the address lookup once the app has a valid location, you just
have to change the code inside the first if. If you’ve found an address, you show
that to the user, otherwise you show a status message.

The code to format the CLPlacemark object into a string is placed in its own method,
just to keep the code readable.

➤ Add the string(from) method:

func string(from placemark: CLPlacemark) -> String {
 // 1
 var line1 = ""

 // 2
 if let s = placemark.subThoroughfare {
 line1 += s + " "
 }

 // 3
 if let s = placemark.thoroughfare {
 line1 += s
 }

 // 4
 var line2 = ""

 if let s = placemark.locality {
 line2 += s + " "
 }
 if let s = placemark.administrativeArea {
 line2 += s + " "
 }
 if let s = placemark.postalCode {
 line2 += s
 }

 // 5
 return line1 + "\n" + line2
}

Let’s look at this in detail:

1. Create new string variable for the first line of text.

2. If the placemark has a subThoroughfare, add it to the string. This is an optional
property, so you unwrap it with if let first. Just so you know, subThoroughfare
is a fancy name for house number.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 63

3. Adding the thoroughfare (or street name) is done similarly. Note that you put a
space between it and subThoroughfare so they don’t get glued together.

4. The same logic goes for the second line of text. This adds the locality (the city),
administrative area (the state or province), and postal code (or zip code), with
spaces between them where appropriate.

5. Finally, the two lines are concatenated (added together) with a newline
character in between. The \n adds the line break into the string.

Tip: If you’re ever wondering what some property or method name means, hold
down the Option key and click the name to get a pop-up with a short description:

Viewing documentation by Option-clicking

(If you get an empty pop-up, then open the Xcode Preferences window and under
Components, Documentation first install the iOS 10 documentation.)

This also works for your own variables. Swift’s type inference is great but it also
makes it harder to see the data types of your variables. Option-click keeps you
from having to dig through the code to find that out:

Option-click your own variables to see their type

➤ In getLocation(), clear out the placemark and lastGeocodingError variables to
start with a clean slate. Put this just above the call to startLocationManager():

placemark = nil
lastGeocodingError = nil

➤ Run the app again. Now you’ll see that seconds after a location is found, the
address label is filled in as well.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 64

Reverse geocoding finds the address for the GPS coordinates

It’s fairly common that street numbers or other details are missing from the
address. The CLPlacemark object may contain incomplete information, which is why
its properties are all optionals. Geocoding is not an exact science!

Note: For some reason, UK postal codes are missing the last few characters.
The above address should really be London England W1J 9HP. This appears to
be a bug in Core Location.

Exercise. If you pick the City Bicycle Ride or City Run locations from the
Simulator’s Debug menu, you should see in the debug area that the app jumps
through a whole bunch of different coordinates (it simulates someone moving from
one place to another). However, the coordinates on the screen and the address
label don’t change nearly as often. Why is that?

Answer: The logic in the MyLocations app was designed to find the most accurate
set of coordinates for a stationary position. You only update the location variable
when a new set of coordinates comes in that is more accurate than previous
readings. Any new readings with a higher – or the same – horizontalAccuracy value
are simply ignored, regardless of what the actual coordinates are.

With the City Bicycle Ride and City Run options the app doesn’t receive the same
coordinates with increasing accuracy but a series of completely different
coordinates. That means this app doesn’t work very well when you’re on the move
(unless you press Stop and try again), but that’s also not what it was intended for.

Note: If you’re playing with different locations in the Simulator or from the
Xcode debugger menu and you get stuck, then the quickest way to get
unstuck is to reset the Simulator. Sometimes it just doesn’t want to move to a
new location even if you tell it to, and then you have to show it who’s boss!

Testing in practice
When I first wrote this source code I had only tested it out on the Simulator and
there it worked fine. Then I put it on my iPod touch and guess what, not so good.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 65

The problem with the iPod touch is that it doesn’t have a GPS so it relies on Wi-Fi
only to determine the location. But Wi-Fi might not be able to give you accuracy up
to ten meters; I got +/- 100 meters at best.

Right now, you only stop the location updates when the accuracy of the reading
falls within the desiredAccuracy setting – something that will never actually happen
on my iPod.

That goes to show that you can’t always rely on the Simulator to test your apps.
You need to put them on your device and test them in the wild, especially when
using location-based APIs. If you have more than one device, then test on all of
them.

In order to deal with this situation, you will improve the “didUpdateLocations”
delegate method some more.

➤ Change locationManager(didUpdateLocations) to:

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 . . .

 if newLocation.horizontalAccuracy < 0 {
 return
 }

 // This section is new!
 var distance = CLLocationDistance(DBL_MAX)
 if let location = location {
 distance = newLocation.distance(from: location)
 }

 if location == nil ||
 location!.horizontalAccuracy > newLocation.horizontalAccuracy {

 . . .

 if newLocation.horizontalAccuracy <=
 locationManager.desiredAccuracy {
 print("*** We're done!")
 stopLocationManager()
 configureGetButton()

 // This statement is new!
 if distance > 0 {
 performingReverseGeocoding = false
 }
 }

 if !performingReverseGeocoding {
 . . .
 }

 // This section is new!
 } else if distance < 1 {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 66

 let timeInterval = newLocation.timestamp.timeIntervalSince(
 location!.timestamp)
 if timeInterval > 10 {
 print("*** Force done!")
 stopLocationManager()
 updateLabels()
 configureGetButton()
 }
 }
}

It’s a pretty long method now, but only the three highlighted sections were added.
This is the first one:

var distance = CLLocationDistance(DBL_MAX)
if let location = location {
 distance = newLocation.distance(from: location)
}

This calculates the distance between the new reading and the previous reading, if
there was one. We can use this distance to measure if our location updates are still
improving.

If there was no previous reading, then the distance is DBL_MAX. That is a built-in
constant that represents the maximum value that a floating-point number can
have. This little trick gives it a gigantic distance if this is the very first reading.
You’re doing that so any of the following calculations still work even if you weren’t
able to calculate a true distance yet.

You also added an if-statement after where you stop the location manager:

if distance > 0 {
 performingReverseGeocoding = false
}

This forces a reverse geocoding for the final location, even if the app is already
currently performing another geocoding request.

You absolutely want the address for that final location, as that is the most accurate
location you’ve found. But if some previous location was still being reverse
geocoded, this step would normally be skipped.

Simply by setting performingReverseGeocoding to false, you always force the
geocoding to be done for this final coordinate.

(Of course, if distance is 0, then this location is the same as the location from a
previous reading and you don’t need to reverse geocode it anymore.)

The real improvement is found at the bottom of the method:

} else if distance < 1 {
 let timeInterval = newLocation.timestamp.timeIntervalSince(

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 67

 location!.timestamp)
 if timeInterval > 10 {
 print("*** Force done!")
 stopLocationManager()
 updateLabels()
 configureGetButton()
 }
}

If the coordinate from this reading is not significantly different from the previous
reading and it has been more than 10 seconds since you’ve received that original
reading, then it’s a good point to hang up your hat and stop.

It’s safe to assume you’re not going to get a better coordinate than this and you
can stop fetching the location.

This is the improvement that was necessary to make my iPod touch stop scanning
eventually. It wouldn’t give me a location with better accuracy than +/- 100 meters
but it kept repeating the same one over and over.

I picked a time limit of 10 seconds because that seemed to give good results.

Note that you don’t just say:

} else if distance == 0 {

The distance between subsequent readings is never exactly 0. It may be something
like 0.0017632. Rather than checking for equals to 0, it’s better to check for less
than a certain distance, in this case one meter.

(By the way, did you notice you did location! to unwrap it before accessing the
timestamp property? When the app gets inside this else-if, the value of location is
guaranteed to be non-nil, so its safe to force unwrap the optional using the
exclamation point.)

➤ Run the app and test that everything still works. It may be hard to recreate this
situation on the Simulator but try it on your iPod touch or iPhone inside the house
and see what the print()’s output to the debug area.

There is another improvement you can make to increase the robustness of this logic
and that is to set a time-out on the whole thing. You can tell iOS to perform a
method one minute from now. If by that time the app hasn’t found a location yet,
you stop the location manager and show an error message.

➤ First add a new instance variable:

var timer: Timer?

➤ Then change startLocationManager() to:

func startLocationManager() {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 68

 if CLLocationManager.locationServicesEnabled() {
 . . .

 timer = Timer.scheduledTimer(timeInterval: 60, target: self,
 selector: #selector(didTimeOut), userInfo: nil, repeats: false)
 }
}

The new lines set up a timer object that sends the “didTimeOut” message to self
after 60 seconds; didTimeOut is the name of a method that you have to provide.

A selector is the term that Objective-C uses to describe the name of a method, and
the #selector() syntax is how you make those selectors from Swift.

➤ Change stopLocationManager() to:

func stopLocationManager() {
 if updatingLocation {
 . . .

 if let timer = timer {
 timer.invalidate()
 }
 }
}

You have to cancel the timer in case the location manager is stopped before the
time-out fires. This happens when an accurate enough location is found within one
minute after starting, or when the user tapped the Stop button.

➤ Finally, add the didTimeOut() method:

func didTimeOut() {
 print("*** Time out")

 if location == nil {
 stopLocationManager()

 lastLocationError = NSError(domain: "MyLocationsErrorDomain",
 code: 1, userInfo: nil)

 updateLabels()
 configureGetButton()
 }
}

didTimeOut() is always called after one minute, whether you’ve obtained a valid
location or not – unless stopLocationManager() cancels the timer first.

If after that one minute there still is no valid location, you stop the location
manager, create your own error code, and update the screen.

By creating your own NSError object and putting it into the lastLocationError
instance variable, you don’t have to change any of the logic in updateLabels().

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 69

However, you do have to make sure that the error’s domain is not kCLErrorDomain
because this error object does not come from Core Location but from within your
own app.

An error domain is simply a string, so "MyLocationsErrorDomain" will do. For the
code I picked 1. The value of code doesn’t really matter at this point because you
only have one custom error, but you can imagine that when an app becomes bigger
you’d have the need for multiple error codes.

Note that you don’t always have to use an NSError object; there are other ways to
let the rest of your code know that an error occurred. In this case updateLabels()
was already using an NSError anyway, so having your own error object just makes
sense.

➤ Run the app. Set the Simulator location to None and press Get My Location.

After a minute, the debug area should say “*** Time out” and the Stop button
reverts to Get My Location.

There should be an error message in the screen:

The error after a time out

Just getting a simple location from Core Location and finding the corresponding
street address turned out to be a lot more hassle than it initially appeared. There
are many different situations to handle. Nothing is guaranteed and everything can
go wrong. (iOS development sometimes requires nerves of steel!)

To recap, the app either:

• finds a location with the desired accuracy,

• finds a location that is not as accurate as you’d like and you don’t get any more
accurate readings,

• doesn’t find a location at all, or

• takes too long finding a location.

The code now handles all these situations, but I’m sure it’s not perfect yet. No
doubt the logic could be tweaked more but it will do for the purposes of this
tutorial.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 70

I hope it’s clear that if you’re releasing a location-based app, you need to do a lot of
field testing!

Required device capabilities
The Info.plist file has a field, Required device capabilities, that lists the
hardware that your app needs in order to run. This is the key that the App Store
uses to determine whether a user can install your app on their device.

The default value is armv7, which is the CPU architecture of the iPhone 3GS and
later models. If your app requires additional features, such as Core Location to
retrieve the user’s location, you should list them here.

➤ Add an item with the value location-services to Info.plist:

Adding location-services to Info.plist

You could also add the item gps, in which case the app requires a GPS receiver. But
when that item is present, users cannot install the app on iPod touch hardware and
certain iPads.

For the full list of possible device capabilities, see the App Programming Guide for
iOS on the Apple Developer website.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 71

P.S. You can now take the print() statements out of the app (or simply comment
them out). Personally, I like to keep them in there as they’re handy for debugging.
In an app that you plan to upload to the App Store you’ll definitely want to remove
the print() statements.

Supporting other iPhone models
So far you’ve been designing and testing the app for the iPhone SE’s 4-inch screen.

As discussed previously, older iPhone models with smaller 3.5-inch screens are not
supported by iOS 10, but your users may be running the app on the iPad and then
it forces the app to use the 3.5-inch dimensions anyway.

Also, if you find work as a professional iOS developer you may need to support iOS
9 or even iOS 8, and that means it’s still necessary for your apps to work on those
smaller screens.

➤ To see what the app looks like on the iPhone 4s, go to Main.storyboard and use
the View as panel at the bottom to switch to the smallest iPhone model.

The ‘Get My Location’ button is missing on the 3.5-inch screen

It’s a good thing you tried this because the Get My Location button is no longer
visible. This button was very close to the bottom of the 4-inch screen already, and it
simply drops off the screen of smaller devices. You will have to move the button up
a bit or end up with 1-star reviews in the App Store.

In the previous tutorials you’ve used Auto Layout to make the app’s user interface
resizable. You used the Pin and Align menus to create constraints that hold your
views in place. This works well enough, but ask any iOS developer and they’ll agree
that it can be a bit of a hassle to manage all those constraints, especially as your UI
designs grow more complex.

Fortunately, there’s a handy shortcut that doesn’t require you to make any
constraints at all: autoresizing.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 72

Before Auto Layout was available, autoresizing – also known as “springs & struts” –
was the main tool for building resizable user interface layouts. It is simple to use
but has its limitations. However, in many cases autoresizing is more than adequate.

Here’s how it works: each view has an autoresizing setting that determines what
happens to the size and position of that view when the size of its superview – i.e.
the view that contains it – changes. You can make the view stick to any of the four
sides of its superview, and resize the view horizontally or vertically to fill up the
space in the superview.

As of iOS 10 you can easily combine autoresizing with Auto Layout. Instead of
making your own constraints, you simply set the autoresizing options for your views
and UIKit will automatically make constraints for them.

Let’s see how this works in practice. You will use autoresizing to keep the Get My
Location button at a fixed distance from the bottom of the screen, no matter how
large or small that screen is.

➤ First use the View as panel to switch back to the iPhone SE, so you can see the
Get My Location button again.

➤ Select the Get My Location button and go to the Size inspector. Change the
autoresizing options to the following:

The autoresizing options connect the button to the bottom of its superview

As you can see in the example animation on the right, the button (the red box) will
now always be positioned relative to the bottom of its superview (the white box).

➤ Use View as to switch to the iPhone 4s (or open the Preview pane in the
Assistant editor). Now the button is visible on 3.5-inch devices as well.

If you find your Tag Location button is now too close to Get My Location, then move
the Tag Location button up a bit in the storyboard. Around Y = 250 should be fine.

➤ Now use View as to view the app on the iPhone 6s Plus (or run the app in the
iPhone 6s Plus or 7 Plus Simulator):

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 73

The app on the iPhone 6s Plus or 7 Plus Simulator

The labels are no longer aligned with the right edge of the screen and the Tag
Location button isn’t centered. That looks quite messy. Autoresizing to the rescue!

➤ Before you make the following changes, switch back to the iPhone SE in the
storyboard.

➤ For the (Message label) and the Tag Location button, change the autoresizing
settings to:

The autoresizing settings for the message label and the button

Now the label and the button will always be centered horizontally in the main view.

➤ For the (Latitude goes here) and (Longitude goes here) labels, change the
autoresizing settings to:

The autoresizing settings for the coordinate labels

This keeps these two labels aligned with the right edge of the screen.

➤ Finally, for the (Address goes here) label, change the autoresizing settings to:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 74

The autoresizing settings for the address label

This stretches the address label to be as wide as the screen allows. Now the app
should look decent on the iPhone 6, 7, and Plus too. Try it out!

You can find the project files for this first part of the app under 01 - GPS
Coordinates in the tutorial’s Source Code folder.

Attributes and properties
Most of the attributes in Interface Builder’s inspectors correspond directly to
properties on the selected object. For example, a UILabel has the following
attributes:

These are directly related to the following properties:

And so on… As you can see, the names may not always be exactly the same
(“Lines” and numberOfLines) but you can easily figure out which property goes with
which attribute.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 75

You can find the properties in the documentation for UILabel. From the Xcode Help
menu, select Documentation and API Reference. Type “uilabel” into the search
field to bring up the class reference for UILabel:

The documentation for UILabel does not list properties for all of the attributes from
the inspectors. For example, in the Attributes inspector there is a section named
“View”. The attributes in this section come from UIView, which is the base class of
UILabel. So if you can’t find a property in the UILabel class, you may need to check
the documentation under “Inherits From”.

Objects vs. classes
Time for something new. Up until now I’ve been calling almost everything an
“object”. However, to use proper object-oriented programming vernacular, we have
to make a distinction between an object and its class.

When you do this,

class ChecklistItem: NSObject {
 . . .
}

You’re really defining a class named ChecklistItem, not an object. An object is what
you get when you instantiate a class:

let item = ChecklistItem()

The item variable now contains an object of the class ChecklistItem. You can also
say: the item variable contains an instance of the class ChecklistItem. The terms
object and instance mean the same thing.

In other words, “instance of class ChecklistItem” is the type of this item variable.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 76

The Swift language and the iOS frameworks already come with a lot of types built-
in but you can also add types of your own by making new classes.

Let’s use an example to illustrate the difference between a class and an instance /
object.

You and me are both hungry, so we decide to eat some ice cream (my favorite
subject next to programming!). Ice cream is the class of food that we’re going to
eat.

The ice cream class looks like this:

class IceCream: NSObject {
 var flavor: String
 var scoops: Int

 func eatIt() {
 // code goes in here
 }
}

You and I go on over to the ice cream stand and ask for two cones:

// one for you
let iceCreamForYou = IceCream()
iceCreamForYou.flavor = "Strawberry"
iceCreamForYou.scoops = 2

// and one for me
let iceCreamForMe = IceCream()
iceCreamForMe.flavor = "Pistachio"
iceCreamForMe.scoops = 3

Yep, I get more scoops but that’s because I’m hungry from all this explaining. ;-)

Now the app has two instances of IceCream, one for you and one for me. There is
just one class that describes what sort of food we’re eating – ice cream – but there
are two distinct objects. Your object has strawberry flavor, mine pistachio.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 77

The class is a template for making new instances

The IceCream class is like a template that declares: objects of this type have two
properties, flavor and scoops, and a method named eatIt().

Any new instance that is made from this template will have those instance variables
and methods, but it lives in its own section of computer memory and therefore has
its own values.

If you’re more into architecture than food, you can also think of a class as a
blueprint for a building. It is the design of the building but not the building itself.
One blueprint can make many buildings, and you could paint each one – each
instance – a different color if you wanted to.

Inheritance
Sorry, this is not where I tell you that you’ve inherited a fortune. We’re talking
about class inheritance here, one of the main principles of object-oriented
programming.

Inheritance is a powerful feature that allows a class to be built on top of another
class. The new class takes over all the data and functionality from that other class
and adds its own specializations to it.

Take the IceCream class from the previous example. It is built on NSObject, the
fundamental class in the iOS frameworks. You can see that in the class line that
defines IceCream:

class IceCream: NSObject {

This means the IceCream class is actually the NSObject class with a few additions of
its own, namely the flavor and scoops properties and the eatIt() method.

NSObject is the base class for almost all other classes in the iOS frameworks. Most

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 78

objects that you’ll encounter are made from a class that either directly inherits from
NSObject or from another class that is ultimately based on NSObject. You can’t
escape it!

You’ve also seen class declarations that look like this:

class ChecklistViewController: UITableViewController

The ChecklistViewController class is really a UITableViewController class with your
own additions. It does everything a UITableViewController can, plus whatever new
data and functionality you’ve given it.

This inheritance thing is very handy because UITableViewController already does a
lot of work for you behind the scenes. It has a table view, it knows how to deal with
prototype cells and static cells, and it handles things like scrolling and a ton of other
stuff. All you have to do is add your own customizations and you’re ready to go.

UITableViewController itself is built on top of UIViewController, which is built on
top of something called UIResponder, and ultimately that class is built on NSObject.
This is called the inheritance tree.

All framework classes stand on the shoulders of NSObject

The big idea here is that each object that is higher up performs a more specialized
task than the one below it.

NSObject, the base class, only provides a few basic functions that are needed for all
objects. For example, it contains an alloc method that is used to reserve memory
space for the object’s instance variables, and the basic init method.

UIViewController is the base class for all view controllers. If you want to make your
own view controller, you extend UIViewController. To extend means that you make
a class that inherits from this one. Other commonly used terms are to derive from
or to base on or to subclass. These phrases all mean the same thing.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 79

You don’t want to write all your own screen and view handling code. If you’d have
to program each screen totally from scratch, you’d still be working on lesson 1!

Thank goodness that stuff has been taken care of by very smart people working at
Apple and they’ve bundled it into UIViewController. You simply make a class that
inherits from UIViewController and you get all that functionality for free. You just
add your own data and logic to that class and off you go!

If your screen primarily deals with a table view then you’d make your class inherit
from UITableViewController instead. This class does everything UIViewController
does – because it inherits from it – but is more specialized for dealing with table
views.

You could write all that code by yourself, but why would you when it’s already
available in a convenient package? Class inheritance lets you re-use existing code
with minimal effort. It can save you a lot of time!

When programmers talk about inheritance, they’ll often throw around the terms
superclass and subclass.

In the example above, UITableViewController is the immediate superclass of
ChecklistViewController, and conversely ChecklistViewController is a subclass of
UITableViewController. The superclass is the class you derived from, while a
subclass derives from your class.

Superclass and subclass

A class in Swift can have many subclasses but only one immediate superclass. Of
course, that superclass can have a superclass of its own. There are many different
classes that inherit from UIViewController, for example:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 80

A small portion of the UIKit inheritance tree

Because nearly all classes extend from NSObject, they form a big hierarchy. It is
important that you understand this class hierarchy so you can make your own
objects inherit from the proper superclasses.

As you’ll see later in this tutorial, there are many other types of hierarchies in
programming. For some reason programmers seem to like them.

Note: In Objective-C code, all your classes must at least inherit from the NSObject
class. This is not the case with Swift. You could also have written the IceCream class
as follows:

class IceCream {
 . . .
}

Now IceCream does not have a base class at all. This is fine in pure Swift code, but
it won’t always work if you try to use IceCream instances in combination with the
iOS frameworks (which are written in Objective-C).

For example, you cannot use IceCream with NSCoder and NSCoding unless you also
make it an NSObject first. So sometimes you’ll have to use the NSObject base class,
even if you’re writing the app in Swift only.

Overriding methods
Inheriting from a class means your new class gets to use the properties and
methods from its superclass.

If you create a new base class Snack,

class Snack {
 var flavor: String
 func eatIt() {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 81

 // code goes in here
 }
}

and make IceCream inherit from that class,

class IceCream: Snack {
 var scoops: Int
}

then elsewhere in your code you can do:

let iceCreamForMe = IceCream()
iceCreamForMe.flavor = "Chocolate"
iceCreamForMe.scoops = 1
iceCreamForMe.eatIt()

This works even though IceCream did not explicitly declare an eatIt() method or
flavor instance variable. But Snack does! Because IceCream inherits from Snack, it
automatically gets this method and instance variable for free.

IceCream can also provide its own eatIt() method if it’s important for your app that
eating ice cream is different from eating any other kind of snack (you may want to
eat it faster, before it melts):

class IceCream: Snack {
 var scoops: Int

 override func eatIt() {
 // code goes in here
 }
}

Now when someone calls iceCreamForMe.eatIt(), this new version of the method is
invoked. Note that Swift requires you to write the override keyword in front of any
methods that you provide that already exist in the superclass.

A possible implementation of this overridden version of eatIt() could look like this:

class IceCream: Snack {
 var scoops: Int
 var isMelted: Bool

 override func eatIt() {
 if isMelted {
 throwAway()
 } else {
 super.eatIt()
 }
 }
}

If the ice cream has melted, you want to throw it in the trashcan. But if it’s still

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 82

edible, you’ll call Snack’s version of eatIt() using super.

Just like self refers to the current object, the super keyword refers to the object’s
superclass. That is the reason you’ve been calling super in various places in your
code, to let any superclasses do their thing.

Something that often happens in the iOS frameworks is that methods are used for
communicating between a class and its subclasses, so that the subclass can
perform specific behavior in certain circumstances. That is what methods such as
viewDidLoad() and viewWillAppear() are for.

These methods are defined and implemented by UIViewController but your own
view controller subclass can override them.

For example, when its screen is about to become visible, the UIViewController class
will call viewWillAppear(true). Normally this will invoke the viewWillAppear()
method from UIViewController itself, but if you’ve provided your own version of this
method in your subclass, then yours will be invoked instead.

By overriding viewWillAppear(), you get a chance to handle this event before the
superclass does:

class MyViewController: UIViewController {
 override func viewWillAppear(_ animated: Bool) {
 // do your own stuff before super

 // don't forget to call super!
 super.viewWillAppear(animated)

 // do your own stuff after super
 }
}

That’s how you can tap into the power of your superclass. A well-designed
superclass provides such “hooks” that allow you to react to certain events.

Don’t forget to call super’s version of the method, though. If you neglect this, the
superclass will not get its own notification and weird things may happen.

You’ve also seen override already in the table view data source methods:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 . . .
}

UITableViewController, the superclass, already implements these methods, so if
you want to provide your own implementation you need to override the existing
ones.

Note: Inside those table view delegate and data source methods it’s usually

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 83

not necessary to call super. The iOS API documentation can tell you whether
you need to call super or not.

When making a subclass, the init methods require special care.

If you don’t want to change any of the init methods from your superclass or add
any new init methods, then it’s easy: you don’t have to do anything. The subclass
will automatically take over the init methods from the superclass.

Most of the time, however, you will want to override an init method or add your
own, for example to put values into the subclass’s new instance variables. In that
case, you may have to override not just that one init method but all of them.

In the next tutorial you’ll create a class GradientView that extends UIView. The app
from that tutorial uses init(frame) to create and initialize the GradientView object.
GradientView overrides this method to set the background color:

class GradientView: UIView {
 override init(frame: CGRect) {
 super.init(frame: frame)
 backgroundColor = UIColor.black
 }
 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }
 . . .
}

But because UIView also has another init method, init?(coder), GradientView needs
to implement that method too even if it doesn’t do anything but call super.

Also note that init(frame) is marked as override, but init?(coder) is required.
The required keyword is used to enforce that every subclass always implements
this particular init method.

Swift wants to make sure that subclasses don’t forget to add their own stuff to such
required init methods, even if the app doesn’t actually use that init method, as in
the case of GradientView – it can be a bit of an over-concerned parent, that Swift.

The rules for inheritance of init methods are somewhat complicated – the official
Swift Programming Guide devotes many pages to it – but at least if you make a
mistake, Xcode will tell you what’s wrong and what you should do to fix it.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 84

Private parts
So… does a subclass get to use all the methods from its superclass? Not quite.

UIViewController and other UIKit classes have a lot more methods hidden away
than you have access to. Often these secret methods do cool things, so it is
tempting to use them. But they are not part of the official API, making them off-
limits for mere mortals such as you and I.

If you ever hear other developers speak of “private APIs” in hushed tones and down
dark alleys, then this is what they are talking about.

It is in theory possible to call such hidden methods if you know their names but this
is not recommended. It may even get your app rejected from the App Store, as
Apple is known to scan apps for usage of these private APIs.

You’re not supposed to use private APIs for two reasons: 1) these APIs may have
unexpected side effects and not be as robust as their publicly available relatives; 2)
there is no guarantee these methods will exist from one version of iOS to the next.
Using them is very risky, as your apps may suddenly stop working.

Sometimes, however, using a private API is the only way to access certain
functionality on the device. If so, you’re out of luck. Fortunately, for most apps the
official public APIs are more than enough and you won’t need to resort to the
private stuff.

Casts
Often your code will refer to an instance not by its own class but by one of its
superclasses. That probably sounds very weird, so let’s look at an example.

The app you’re writing in this tutorial has a UITabBarController with three tabs,
each of which is represented by a view controller. The view controller for the first
tab is CurrentLocationViewController. Later in this tutorial you’ll add two others,
LocationsViewController for the second tab, and MapViewController for the third.

The designers of iOS obviously didn’t know anything about those three particular
view controllers when they created UITabBarController. The only thing the tab bar
controller can reliably depend on is that each tab has a view controller that inherits
from UIViewController.

So instead of talking to the CurrentLocationViewController class, the tab bar
controller only sees its superclass part, UIViewController.

As far as the tab bar controller is concerned it has three UIViewController instances

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 85

and it doesn’t know or care about the additions that you’ve made to them.

The UITabBarController does not see your subclasses

The same thing goes for UINavigationController. To the navigation controller, any
new view controllers that get pushed on the navigation stack are all instances of
UIViewController, nothing more, nothing less.

Sometimes that can be a little annoying. When you ask the navigation controller for
one of the view controllers on its stack, it necessarily returns a reference to a
“UIViewController” object, even though that is not the full type of that object.

If you want to treat that object as your own view controller subclass instead, you
need to cast it to the proper type.

In the previous tutorial you did the following in prepare(for, sender):

let navigationController = segue.destination as! UINavigationController

let controller = navigationController.topViewController
 as! ItemDetailViewController

controller.delegate = self

Here you wanted to get the top view controller from the navigation stack, which is
an instance of ItemDetailViewController, and set its delegate property.

However, UINavigationController’s topViewController property won’t give you an
object of type ItemDetailViewController. The value it returns is of the plain
UIViewController type, which naturally doesn’t have your delegate property.

If you were to do it without the “as! ItemDetailViewController” bit, like so,

let controller = navigationController.topViewController

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 86

then Xcode gives an error on the line below it. Swift now infers that the type of
controller should also be UIViewController, but UIViewController does not have
the delegate property. That property is something you only added to the subclass,
ItemDetailViewController.

You know that topViewController refers to an ItemDetailViewController, but Swift
doesn’t. Even though all ItemDetailViewControllers are UIViewControllers, not all
UIViewControllers are ItemDetailViewControllers!

Just because your friend Chuck has no hair, that doesn’t mean all bald guys are
named Chuck.

To solve this problem, you have to cast the object to the proper type. You as the
developer know this particular object is an ItemDetailViewController, so you use
the as! cast operator to tell the compiler, “I want to treat this object as an
ItemDetailViewController.”

With the cast, the code looks like this:

let controller = navigationController.topViewController
 as! ItemDetailViewController

(You would put this all on a single line in Xcode. Having long descriptive names is
great for making the source code more readable, but it also necessitates clumsy
line wrapping to make it fit in the book.)

Now you can treat the value from controller as an ItemDetailViewController
object. The compiler can’t check whether the thing you’re casting really is that kind
of object, so if you’re wrong and it’s not, your app will most likely crash.

Casts can fail for other reasons. For example, the value that you’re trying to cast
may actually be nil. If that’s a possibility, it’s a good idea to use the as? operator to
make it an optional cast. You must also store the result of the cast into an optional
value or use if let to safely unwrap it.

Note that a cast doesn’t magically convert one type into another. You can’t cast an
Int into a String, for example. You only use a cast to make a type more specific,
and the two types have to be compatible for this to work.

Casting is very common in Swift programs because of the Objective-C heritage of
the iOS frameworks. You’ll be doing a lot of it!

To summarize, there are three kinds of casts you can perform:

as? for casts that are allowed to fail. This would happen if the object is nil or
doesn’t have a type that is compatible with the one you’re trying to cast to. It will
try to cast to the new type and if it fails, then no biggie. This cast returns an
optional that you can unwrap with if let.

as! for casts between a class and one of its subclasses. This is also known as a

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 87

downcast. As with implicitly unwrapped optionals this cast is potentially unsafe and
you should only use as! when you are certain it cannot possibly go wrong. You
often need to use this cast when dealing with objects coming from UIKit and the
other iOS frameworks. Better get used to all those exclamation marks!

as for casts that can never possibly fail. Swift can sometimes guarantee that a type
cast will always work, for example between NSString and String. In that case you
can leave off the ? or the ! and just write as.

It can sometimes be confusing to decide which of these three cast operators you
need. If so, just type “as” and Xcode will suggest the correct variant. But nine times
out of ten it will be as!.

The Tag Location screen
There is a big button on the main screen of the app that says Tag Location. It only
becomes active when GPS coordinates have been captured, and you use it to add a
description and a photo to that location.

In this section you’ll build the Tag Location screen but you won’t save the location
object anywhere yet, that’s the topic of the next section.

The Tag Location screen is a regular table view controller with static cells, so this is
going to be very similar to what you did a few times already in the previous tutorial.

The finished Tag Location screen will look like this:

The Tag Location screen

The description cell at the top contains a UITextView for text. You’ve already used
the UITextField control, which is for editing a single line of text; the UITextView is

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 88

very similar but for editing multiple lines.

Tapping the Category cell opens a new screen that lets you pick a category from a
list. This is very similar to the icon picker from the last tutorial, so no big surprises
there either.

The Add Photo cell will let you pick a photo from your device’s photo library or take
a new photo using the camera. You’ll skip this feature for now and build that later in
this tutorial. Let’s not get ahead of ourselves and try too much at once!

The other cells are read-only and contain the latitude, longitude and address
information that you just captured, and the current date so you’ll know when it was
that you tagged this location.

Exercise. Try to implement this screen by yourself using the description I just gave
you. You don’t have to make the Category and Add Photo buttons work yet. Yikes,
that seems like a big job! It sure is, but you should be able to pull this off. This
screen doesn’t do anything you haven’t done in the previous tutorial. So if you feel
brave, go ahead!

Adding the new view controller
➤ Add a new file to project using the Swift File template. Name the file
LocationDetailsViewController.

You know what’s next: create outlets and connect them to the controls on the
storyboard. In the interest of saving time, I’ll just give you the code that you’re
going to end up with.

➤ Replace the contents of LocationDetailsViewController.swift with the
following:

import UIKit

class LocationDetailsViewController: UITableViewController {
 @IBOutlet weak var descriptionTextView: UITextView!
 @IBOutlet weak var categoryLabel: UILabel!
 @IBOutlet weak var latitudeLabel: UILabel!
 @IBOutlet weak var longitudeLabel: UILabel!
 @IBOutlet weak var addressLabel: UILabel!
 @IBOutlet weak var dateLabel: UILabel!

 @IBAction func done() {
 dismiss(animated: true, completion: nil)
 }

 @IBAction func cancel() {
 dismiss(animated: true, completion: nil)
 }
}

Nothing special here, just a bunch of outlet properties and two action methods that

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 89

both dismiss the screen.

➤ In the storyboard, drag a new Table View Controller into the canvas and put it
next to the Current Location View Controller.

➤ In the Identity inspector, change the Class attribute of the table view
controller to LocationDetailsViewController to link it with the source code file
you just created.

➤ With the new Table View Controller selected, choose Editor → Embed In →
Navigation Controller from Xcode’s menu bar to put it inside a new navigation
controller.

➤ Ctrl-drag from the Tag Location button to this new navigation controller and
create a Present Modally segue. Give the segue the identifier TagLocation.

➤ Double-click the Location Details View Controller’s navigation bar roughly in the
center, and change the title to Tag Location.

➤ Switch the table content to Static Cells and its style to Grouped.

The storyboard now looks like this:

The Tag Location screen in the storyboard

➤ Run the app and make sure the Tag Location button works.

Of course, the screen won’t do anything useful yet. Let’s add some buttons.

➤ Drag a Bar Button Item into the left slot of the navigation bar. Make it a Cancel
button and connect it to the cancel action. (If you’re using the Connections
inspector, the thing that you’re supposed to connect is the Bar Button Item’s
“selector”, under Sent Actions.)

➤ Also drag a Bar Button Item into the right slot. Set both the Style and System
Item attributes to Done, and connect it to the done action.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 90

➤ Run the app again and make sure you can close the Tag Location screen after
you’ve opened it.

Making the cells
There will be three sections in this table view:

1. The description text view and the category cell. These can be changed by the
user.

2. The photo. Initially this cell says Add Photo but once the user has picked a
photo you’ll display the actual photo inside the cell. So it’s good to have that in
a section of its own.

3. The latitude, longitude, address, and date rows. These are read-only
information.

➤ Open the storyboard. Select the table view and go to the Attributes inspector.
Change the Sections field from 1 to 3.

When you do this, the contents of the first section are automatically copied to the
next sections. That isn’t quite what you want, so you’ll have to remove some rows
here and there. The first section will have 2 rows, the middle section will have just
1 row, and the last section will have 4 rows.

➤ Select one cell in the first section and delete it. (If it won’t delete, make sure you
selected the whole Table View Cell and not its Content View.)

➤ Delete two cells from the middle section.

➤ Select the last Table View Section object (that is easiest in the outline pane on
the left of the storyboard editor) and in the Attributes inspector set its Rows to
4.

Adding a row to a table view section

(Alternatively you can drag a new Table View Cell from the Object Library into the

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 91

table.)

The second row from the first section, and the first, second and fourth rows in the
last section will all use a standard cell style.

➤ Select these cells and set their Style attribute to Right Detail.

The cells with the Right Detail style

The labels in these standard cell styles are regular UILabels, so you can select them
and change their properties.

➤ Name these labels from top to bottom: Category, Latitude, Longitude, and
Date.

(If Xcode moves the label when you type into it or cuts off the text, then change
the cell style to Left Detail and back again to Right Detail. That seems to fix it.)

➤ Drag a new Label into the cell from the middle section (the one that’s still
empty). You cannot use a standard cell style for this cell so you’ll design it yourself.
Name this label Add Photo. (Later on you’ll also add an image view to this cell.)

➤ Make sure the font of the label is System, size 17, so it’s the same size as the
labels from the Right Detail cell style. If necessary, so use Editor → Size to Fit
Content to resize the label to its optimal size.

➤ Put the Add Photo label at X: 15 (in the Size inspector) and vertically centered
in its cell. You can use the Editor → Align → Vertically in Container menu option
for this. (If this menu option is grayed out, deselect the label and select it again.)

The table should now look like this:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 92

The labels in the Tag Location screen

Note: You’re going to make a bunch of changes that are the same for each
cell. For some of these, it is easier if you select all the cells at once and then
change the setting. That will save you some time.

Xcode doesn’t let you select more than one cell at a time when they are in
different sections, but you can do it in the outline pane sidebar by holding
down ⌘ and clicking on multiple cells.

Unfortunately, some menu items are grayed out when you have a multiple
selection, so you’ll still have to change some of the settings for each cell
individually.

Only the Category and Add Photo cells are tap-able, so you have to set the cell
selection color to None on the other cells.

➤ Select all the cells except Category and Add Photo. In the Attributes inspector,
set Selection to None.

➤ Select the Category and Add Photo cells and set Accessory to Disclosure
Indicator.

Category and Add Photo now have a disclosure indicator

The empty cell in the last section is for the Address label. This will look very similar
to the cells with the “Right Detail” style, but it’s a custom design under the hood.

➤ Drag a new Label into that cell and name it Address. Put it on the left. Set the
X position to 15, Y position to 11.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 93

➤ Drag another Label into the same cell and name it Detail. Put it on the right, X
position 261, Y position 11.

➤ Make sure the font of both labels is System, size 17.

➤ Change the Alignment of the address detail label to right-aligned.

The detail label is special. Most likely the street address will be too long to fit in that
small space, so you’ll configure this label to have a variable number of lines. This
requires a bit of programming in the view controller to make it work, but you also
have to set up this label’s attributes properly.

➤ In the Attributes inspector for the address detail label, set Lines to 0 and Line
Break to Word Wrap. When the number of lines is 0, the label will resize vertically
to fit all the text that you put into it, which is exactly what you need.

The address detail label can have multiple lines

So far you’ve left the cell at the top empty. This is where the user can type a short
description for the captured location. Currently there is not much room to type
anything, so first you’ll make the cell larger.

➤ Click on the top cell to select it, then go into the Size inspector and type 88
into the Row Height field.

Changing the height of a row

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 94

You can also drag the cell to this new height by the handle at its bottom, but I
prefer to simply type in the new value.

The reason I chose 88 is that mostly everything in the iOS interface has a size of 44
points. The navigation bar is 44 points high, regular table view cells are 44 points
high, and so on. Choosing 44 or a multiple of it keeps the UI looking balanced.

➤ Drag a Text View into the cell. Give it the following position and size, X: 15, Y:
10, Width: 290, Height: 68.

➤ By default, Interface Builder puts a whole bunch of fake Latin text (Lorem ipsum
dolor, etc) into the text view. Replace that text with “(Description goes here)”. The
user will never see that text, but it’s handy to remind yourself what this view is for.

➤ Set the font to System, size 17.

The attributes for the text view

➤ With the text view selected, go to the Size inspector. Change the Autoresizing
settings to the following:

The autoresizing settings for the text view

With the “springs” enabled, the text view will automatically grow larger to fill up the
extra space on the iPhone 6s, 7, and Plus devices.

One more thing to do and then the layout is complete. Because the top cell doesn’t
have a label to describe what it does – and the text view will initially be empty as
well – the user may not know what it is for.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 95

There really isn’t any room to add a label in front of the text view, as you’ve done
for the other rows, so let’s add a header to the section. Table view sections can
have a header and footer, and these can either be text or a complete view with
controls of its own.

➤ Select the top-most Table View Section and in its Attributes inspector type
Description into the Header field:

Giving the section a header

That’s the layout done. The Tag Location screen should look like this in the
storyboard:

The finished design of the Tag Location screen

Now you can actually make the screen do stuff.

➤ Connect the Detail labels and the text view to their respective outlets. It should
be obvious which one goes where. (Tip: Ctrl-drag from the round yellow icon that
represents the view controller to each of the labels. That’s the quickest way.)

If you look at the Connections inspector for this view controller, you should see
the following:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 96

The connections of the Location Details View Controller

➤ Run the app to test whether everything works.

Of course, the screen still says “Detail” in the labels instead of the location’s actual
coordinates and address because you haven’t given it any data yet.

Putting the location info into the screen
➤ Add two new properties to LocationDetailsViewController.swift:

var coordinate = CLLocationCoordinate2D(latitude: 0, longitude: 0)
var placemark: CLPlacemark?

You’ve seen the CLPlacemark object before. It contains the address information –
street name, city name, and so on – that you’ve obtained through reverse
geocoding. This is an optional because there is no guarantee that the geocoder
finds an address.

The CLLocationCoordinate2D object is new. This contains the latitude and longitude
from the CLLocation object that you received from the location manager. You only
need those two fields, so there’s no point in sending along the entire CLLocation
object. The coordinate is not an optional, so you must give it some initial value.

Exercise. Why is coordinate not an optional?

Answer: You cannot tap the Tag Location button unless GPS coordinates have been
found, so you’ll never open the LocationDetailsViewController without a valid set
of coordinates.

On the segue from the Current Location screen to the Tag Location screen you will
fill in these two properties, and then the Tag Location screen can put their values
into its labels.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 97

Xcode isn’t happy with the two lines you just added. It complains about “Use of
unresolved identifier CLLocationCoordinate2D” and “CLPlacemark”. That means
Xcode does not know anything about these types yet.

That’s because they are part of the Core Location framework – and before you can
use anything from a framework you first need to import it.

➤ Add to the top of the file, below the import for UIKit:

import CoreLocation

Now Xcode’s error messages should disappear after a second or two. If they don’t,
type ⌘+B to build the app again.

Structs
I said CLLocationCoordinate2D was an object, but unlike the objects you’ve seen
before, it is not described by a class. CLLocationCoordinate2D is a so-called struct.

Structs are like classes but a little less powerful. They can have properties and
methods, but unlike classes they cannot inherit from one another.

The definition for CLLocationCoordinate2D is as follows:

struct CLLocationCoordinate2D {
 var latitude: CLLocationDegrees
 var longitude: CLLocationDegrees
}

This struct has two fields, latitude and longitude. Both these fields have the data
type CLLocationDegrees, which is a synonym for Double:

typealias CLLocationDegrees = Double

The Double type is one of the primitive types built into the language. It’s like a
Float but with higher precision.

Don’t let these synonyms confuse you; CLLocationCoordinate2D is basically this:

struct CLLocationCoordinate2D {
 var latitude: Double
 var longitude: Double
}

The reason the designers of Core Location used CLLocationDegrees instead of
Double is that “CL Location Degrees” tells you what this type is intended for: it
stores the degrees of a location from the Core Location framework.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 98

Underneath the hood it’s a Double, but as a user of Core Location all you need to
care about when you want to store latitude or longitude is that you can use the
CLLocationDegrees type. The name of the type adds meaning.

UIKit and the other iOS frameworks also use structs regularly. Common examples
are CGPoint and CGRect. In fact, Array and Dictionary are also structs.

Structs are more lightweight than classes. If you just need to pass around a set of
values it’s often easier to bundle them into a struct and pass that struct around,
and that is exactly what Core Location does with coordinates.

Back to the new properties that you just added to LocationDetailsViewController.
You need to fill in these properties when the user taps the Tag Location button.

➤ Switch to CurrentLocationViewController.swift and add the prepare-for-
segue method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "TagLocation" {
 let navigationController = segue.destination
 as! UINavigationController
 let controller = navigationController.topViewController
 as! LocationDetailsViewController

 controller.coordinate = location!.coordinate
 controller.placemark = placemark
 }
}

You’ve seen how this works before. You use some casting magic to obtain the
proper destination view controller and then set its properties. Now when the segue
is performed, the coordinate and address are given to the Tag Location screen.

Because location is an optional you need to unwrap it before you can access its
coordinate property. It’s perfectly safe to force unwrap at this point because the
Tag Location button that triggers the segue won’t be visible unless a location is
found. At this point, location will never be nil.

The placemark variable is also an optional, but so is the placemark property on
LocationDetailsViewController, so you don’t need to do anything special here. You
can always assign the value of one optional to another optional without problems.

viewDidLoad() is a good place to display these things on the screen.

➤ Add the viewDidLoad() method to LocationDetailsViewController.swift:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 99

override func viewDidLoad() {
 super.viewDidLoad()

 descriptionTextView.text = ""
 categoryLabel.text = ""

 latitudeLabel.text = String(format: "%.8f", coordinate.latitude)
 longitudeLabel.text = String(format: "%.8f", coordinate.longitude)

 if let placemark = placemark {
 addressLabel.text = string(from: placemark)
 } else {
 addressLabel.text = "No Address Found"
 }

 dateLabel.text = format(date: Date())
}

This simply puts something in every label. It uses two helper methods that you
haven’t defined yet: string(from) to format the CLPlacemark object into a string,
and format(date) to do the same for a Date object.

➤ Add the string(from) method below viewDidLoad():

func string(from placemark: CLPlacemark) -> String {
 var text = ""

 if let s = placemark.subThoroughfare {
 text += s + " "
 }
 if let s = placemark.thoroughfare {
 text += s + ", "
 }
 if let s = placemark.locality {
 text += s + ", "
 }
 if let s = placemark.administrativeArea {
 text += s + " "
 }
 if let s = placemark.postalCode {
 text += s + ", "
 }
 if let s = placemark.country {
 text += s
 }
 return text
}

This is fairly straightforward. It is similar to how you formatted the placemark on
the main screen, except that you also include the country.

To format the date you’ll use a DateFormatter object. You’ve seen this class in the
previous tutorial. It converts the date and time that are encapsulated by the Date
object into a human-readable string, taking into account the user’s language and
locale settings.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 100

In the previous tutorial you created a new instance of DateFormatter every time you
wanted to convert a Date to a string. Unfortunately, DateFormatter is a relatively
expensive object to create. In other words, it takes quite long to initialize this
object. If you do that many times over then it may slow down your app (and drain
the phone’s battery faster).

It is better to create DateFormatter just once and then re-use that same object over
and over. The trick is that you won’t create the DateFormatter object until the app
actually needs it. This principle is called lazy loading and it’s a very important
pattern for iOS apps. The work that you don’t do won’t cost any battery power.

In addition, you’ll only ever create one instance of DateFormatter. The next time
you need to use DateFormatter you won’t make a new instance but re-use the
existing one.

To pull this off you’ll use a private global constant. That’s a constant that lives
outside of the LocationDetailsViewController class (global) but it is only visible
inside the LocationDetailsViewController.swift file (private).

➤ Add the following to the top of LocationDetailsViewController.swift, in
between the import and class lines:

private let dateFormatter: DateFormatter = {
 let formatter = DateFormatter()
 formatter.dateStyle = .medium
 formatter.timeStyle = .short
 return formatter
}()

What is going on here? You’re creating a new constant named dateFormatter of
type DateFormatter, that much should be obvious. This constant is private so it
cannot be used outside of this Swift file.

You’re also giving dateFormatter an initial value, but what follows the = is not an
ordinary value – it looks like a bunch of source code in between { } brackets. That’s
because it is a closure.

Normally you’d create a new object like this:

private let dateFormatter = DateFormatter()

But to initialize the date formatter it’s not enough to just make an instance of
DateFormatter, you also want to set the dateStyle and timeStyle properties of this
instance.

To create the object and set its properties in one go, you can use a closure:

private let dateFormatter: DateFormatter = {
 // the code that sets up the DateFormatter object
 return formatter
}()

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 101

Inside the closure is the code that creates and initializes the new DateFormatter
object, and then returns it. This returned value is what gets put into dateFormatter.

The knack to making this work is the () at the end. Closures are like functions, and
to perform the code inside the closure you call it just like you’d call a function.

Note: If you leave out the (), Swift thinks you’re assigning the closure itself to
dateFormatter – in other words, dateFormatter will contain a block of code, not
an actual DateFormatter object. That’s not what you want.

Instead you want to assign the result of that closure to dateFormatter. To
make that happen, you use the () to perform or evaluate the closure – this
runs the code inside the closure and returns the DateFormatter object.

Using a closure to create and configure an object all at once is a nifty trick; you can
expect to see this often in Swift programs.

In Swift, globals are always created in a lazy fashion, which means the code that
creates and sets up this DateFormatter object isn’t performed until the very first
time the dateFormatter global is used in the app.

That happens inside the new format(date) method.

➤ Add this format(date) method. It goes inside the class again:

func format(date: Date) -> String {
 return dateFormatter.string(from: date)
}

How simple is that? It just asks the DateFormatter to turn the Date into a String
and returns that.

Exercise. How can you verify that the date formatter is really only created once?

Answer: Add a print() just before the return formatter line in the closure. This
print() text should appear only once in the Xcode debug pane.

➤ Run the app. Choose the Apple location from the Simulator’s Debug menu. Wait
until the street address is visible and then press the Tag Location button.

The coordinates, address and date are all filled in:

The Address label is too small to fit the entire address

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 102

The address seems to be missing something… only the first part of the address is
visible (just the subthoroughfare or street number).

You have earlier configured the label to fit multiple lines of text, but the problem is
that the table view doesn’t know about that.

➤ Add the following method to LocationDetailsViewController.swift:

// MARK: - UITableViewDelegate

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 if indexPath.section == 0 && indexPath.row == 0 {
 return 88

 } else if indexPath.section == 2 && indexPath.row == 2 {
 addressLabel.frame.size = CGSize(
 width: view.bounds.size.width - 115,
 height: 10000)
 addressLabel.sizeToFit()
 addressLabel.frame.origin.x = view.bounds.size.width -
 addressLabel.frame.size.width - 15
 return addressLabel.frame.size.height + 20

 } else {
 return 44
 }
}

This delegate method is called by the table view when it loads its cells. You use it to
tell the table view how tall each cell is.

Usually, all the cells have the same height and you can simply set a property on the
table view if you wanted to change the height of all the cells at once (using the Row
Height attribute in the storyboard or the tableView.rowHeight property).

This table view, however, has three different cell heights:

• The Description cell at the top. You already set its height to 88 points in the
storyboard.

• The Address cell. The height of this cell is variable. It may be anywhere from one
line of text to several, depending on how big the address string is.

• The other cells. They all have the standard cell height of 44 points.

The three if-statements in tableView(heightForRowAt) correspond to those three
situations. Let’s take a look at the code for sizing the Address label:

// 1
addressLabel.frame.size = CGSize(width: view.bounds.size.width - 115,
 height: 10000)
// 2
addressLabel.sizeToFit()

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 103

// 3
addressLabel.frame.origin.x = view.bounds.size.width -
 addressLabel.frame.size.width - 15
// 4
return addressLabel.frame.size.height + 20

This uses a bit of trickery to resize the UILabel to make all its text fit to the width of
the cell (using word-wrapping), and then you use the newly calculated height of
that label to determine how tall the cell must be.

The frame property is a CGRect that describes the position and size of a view.

CGRect is a struct that describes a rectangle. This rectangle has an origin made up
of a CGPoint value with an (X, Y) coordinate, and a CGSize value for the width and
height.

All UIView objects – and that includes subclasses such as UILabel – have a frame
rectangle. Changing the frame property is how views are positioned on the screen.

Step-by-step this is what the code does:

1. Change the width of the label to be 115 points less than the width of the screen,
which makes it about 200 points wide on the iPhone SE.

Those 115 points that get subtracted account for the “Address” label on the left,
the margins at the edges of the cell (15 points each), and some extra space
between the two labels.

This code also makes the frame a whopping 10,000 points high. That is done to
make the rectangle tall enough to fit a lot of text.

Because you’re changing the frame property, the multi-line UILabel will now
word-wrap the text to fit the requested width. This works because you already
set the text on the label in viewDidLoad().

2. Now that the label has word-wrapped its contents, you’ll have to size the label
back to the proper height because you don’t want a cell that is 10,000 points
tall. Remember the Size to Fit Content menu option from Interface Builder that
you can use to resize a label to fit its contents? You can also do that from code
with sizeToFit().

3. The call to sizeToFit() removed any spare space to the right and bottom of the
label. It may also have changed the width so that the text fits inside the label as
snugly as possible, and because of that the X-position of the label may no
longer be correct.

A “detail” label like this should be placed against the right edge of the screen
with a 15-point margin between them. That’s done by changing the frame’s
origin.x position.

4. Now that you know how high the label is, you can add a margin (10 points at

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 104

the top, 10 points at the bottom) to calculate the full height for the cell.

Note: If you think this is a horrible way to figure out how large the contents
are of a multiline label that does word wrapping, then I totally agree. But it
works, and that’s the important thing!

You may be wondering if this isn’t one of those situations that Auto Layout can
help with, and you’d be right. You can indeed use Auto Layout to automatically
calculate the height of the address cell using so-called self-sizing table view
cells.

However, using multiline labels in Auto Layout is always a bit finicky. I find it
easier to perform the calculations by hand. Besides, doing a little math never
hurt anyone… ;-)

➤ Run the app. Now the reverse geocoded address should completely fit in the
Address cell (even on models with larger screens such as the iPhone 6s and 7). Try
it out with a few different locations.

The label resizes to fit the address

Frame vs. bounds
In the code above, you do the following:

addressLabel.frame.size = CGSize(
 width: view.bounds.size.width - 115,
 height: 10000)

You use the view’s bounds to calculate the address label’s frame. Both frame and
bounds are of type CGRect, which describes a rectangle. So what is the difference
between the bounds and the frame?

The frame describes the position and size of a view in its parent view. If you want
to put a 150×50 label at position X: 100, Y: 30, then its frame is (100, 30, 150,
50). To move a view from one position to another, you change its frame property (or
its center property, which in turn will modify the frame).

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 105

Where the frame describes the outside of the view, the bounds describe the inside.
The X and Y coordinates of the bounds are (0, 0) and the width and height will be
the same as the frame. So for the example, the bounds are (0, 0, 150, 50). It’s a
matter of perspective.

Sometimes it makes sense to use the bounds; sometimes you need to use the
frame. The frame is actually derived from a combination of properties: the center
position of the view, the bounds, and any transform that is set on the view.
(Transforms are used for rotating or scaling the view.)

When you set Auto Layout constraints on a view, those constraints are used to
calculate the view’s frame. If a view has constraints, you shouldn’t change the
frame or bounds properties yourself, or it will conflict with Auto Layout and the
results may be unpredictable.

The category picker
When the user taps the Category cell, the app shows a list of category names:

The category picker

This is a new screen, so you also need a new view controller. The way this works is
very similar to the icon picker from the previous tutorial. I’m just going to give you
the source code and tell you how to hook it up.

➤ Add a new file to the project named CategoryPickerViewController.swift.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 106

➤ Replace the contents of CategoryPickerViewController.swift with:

import UIKit

class CategoryPickerViewController: UITableViewController {
 var selectedCategoryName = ""

 let categories = [
 "No Category",
 "Apple Store",
 "Bar",
 "Bookstore",
 "Club",
 "Grocery Store",
 "Historic Building",
 "House",
 "Icecream Vendor",
 "Landmark",
 "Park"]

 var selectedIndexPath = IndexPath()

 override func viewDidLoad() {
 super.viewDidLoad()

 for i in 0..<categories.count {
 if categories[i] == selectedCategoryName {
 selectedIndexPath = IndexPath(row: i, section: 0)
 break
 }
 }
 }

 // MARK: - UITableViewDataSource

 override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return categories.count
 }

 override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "Cell", for: indexPath)

 let categoryName = categories[indexPath.row]
 cell.textLabel!.text = categoryName

 if categoryName == selectedCategoryName {
 cell.accessoryType = .checkmark
 } else {
 cell.accessoryType = .none
 }
 return cell
 }

 // MARK: - UITableViewDelegate

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 107

 override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 if indexPath.row != selectedIndexPath.row {
 if let newCell = tableView.cellForRow(at: indexPath) {
 newCell.accessoryType = .checkmark
 }
 if let oldCell = tableView.cellForRow(at: selectedIndexPath) {
 oldCell.accessoryType = .none
 }
 selectedIndexPath = indexPath
 }
 }
}

There’s nothing special going on here. This is a table view controller that shows a
list of category names. It has table view data source and delegate methods. The
data source gets its rows from the categories array.

The only thing worth noting is the selectedIndexPath instance variable. When the
screen opens it shows a checkmark next to the currently selected category. This
comes from the selectedCategoryName property, which is filled in when you segue to
this screen.

When the user taps a row, you want to remove the checkmark from the previously
selected cell and put it in the new cell.

In order to be able to do that, you need to know which row is the currently selected
one. You can’t use selectedCategoryName for this because that is a string, not a row
number. Therefore, you first need to find the row number – or index-path – for the
selected category name.

That happens in viewDidLoad(). You loop through the array of categories and
compare the name of each category to selectedCategoryName. If they match, you
create an index-path object and store it in the selectedIndexPath variable. Once a
match is found, you can break out of the loop because there’s no point in looking at
any of the other categories.

Now that you know the row number, you can remove the checkmark for this row in
tableView(didSelectRowAt) when another row gets tapped.

It’s a bit of work for such a small feature, but in a good app it’s the details that
matter.

There are several different ways of looping through the contents of an array.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 108

You’ve already seen for in, which is used as follows:

for category in categories { . . .

This puts the name of each category into the temporary constant named category.

However, in order to make the index-path object you don’t want the name of the
category but the index of that category in the array. So you’ll have to loop in a
slightly different fashion:

for i in 0..<categories.count {
 let category = categories[i]
 . . .
}

Thanks to the half-open range operator ..<, i is a number that increments from 0
to categories.count – 1. This is a very common pattern for looping through an
array if you want to have the index as well.

Another way to do this is to use the enumerated() method, of which you’ll see an
example in the next tutorial. As a quick preview, this is how you’d use it:

for (i, category) in categories.enumerated() {
 . . .
}

➤ Open the storyboard and drag a new Table View Controller into the canvas.
Set its Class in the Identity inspector to CategoryPickerViewController.

➤ Change the Style of the prototype cell to Basic, and give it the re-use identifier
Cell.

➤ Ctrl-drag from the Category cell on the Location Details View Controller to this
new view controller and choose Selection Segue - Show.

➤ Give the segue the identifier PickCategory.

The Category Picker View Controller now has a navigation bar at the top. You could
change its title to “Choose Category”, but Apple recommends that you do not give
view controllers a title if their purpose is obvious. This helps to keep the navigation
bar uncluttered.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 109

The category picker in the storyboard

That’s enough for the storyboard. Now all that remains is to handle the segue.

➤ Switch back to LocationDetailsViewController.swift and add a new instance
variable categoryName. You’ll use this to temporarily store the chosen category.

var categoryName = "No Category"

Initially you set the category name to “No Category”. That is also the category at
the top of the list in the category picker.

➤ Change viewDidLoad() to put categoryName into the label:

override func viewDidLoad() {
 super.viewDidLoad()

 descriptionTextView.text = ""
 categoryLabel.text = categoryName // change this
 . . .

➤ Finally, add the prepare(for:sender:) method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "PickCategory" {
 let controller = segue.destination as! CategoryPickerViewController
 controller.selectedCategoryName = categoryName
 }
}

This simply sets the selectedCategoryName property of the category picker. And with
that, the app has categories.

➤ Run the app and play with the category picker.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 110

Selecting a new category

Hmm, it doesn’t seem to work very well. You can choose a category but the screen
doesn’t close when you tap a row. When you press the back button, the category
you picked isn’t shown on the screen.

Exercise. Which piece of the puzzle is missing?

Answer: The CategoryPickerViewController currently does not have a way to
communicate back to the LocationDetailsViewController that the user picked a
new category.

I hope that at this point you’re thinking, “Of course, dummy! You forgot to give the
category picker a delegate protocol. That’s why it cannot send any messages to the
other view controller.” (If so, awesome! You’re getting the hang of this.)

A delegate protocol is a fine solution indeed, but I want to show you a handy
storyboarding feature that can accomplish the same thing with less work: unwind
segues.

In case you were wondering what the orange “Exit” icons in the storyboard are for,
you now have your answer: unwind segues.

The Exit icon

Where a regular segue is used to open a new screen, an unwind segue closes the
active screen. Sounds simple enough. However, making unwind segues is not very
intuitive.

The orange Exit icons don’t appear to do anything. Try Ctrl-dragging from the
prototype cell to the Exit icon, for example. It won’t let you make a connection.

First you have to add a special type of action method to the code.

➤ In LocationDetailsViewController.swift, add the following method:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 111

@IBAction func categoryPickerDidPickCategory(_ segue: UIStoryboardSegue)
{
 let controller = segue.source as! CategoryPickerViewController
 categoryName = controller.selectedCategoryName
 categoryLabel.text = categoryName
}

This is an action method because it has the @IBAction annotation. What’s different
from a regular action method is the parameter, a UIStoryboardSegue object.

Normally if an action method has a parameter, it points to the control that triggered
the action, such as a button or slider. But in order to make an unwind segue you
need to define an action method that takes a UIStoryboardSegue parameter.

What happens inside the method is pretty straightforward. You look at the view
controller that sent the segue (the source), which of course is the
CategoryPickerViewController, and then read the value of its selectedCategoryName
property. That property contains the category that the user picked.

➤ Open the storyboard. Ctrl-drag from the prototype cell to the Exit button. This
time it allows you to make a connection:

Ctrl-dragging to the Exit icon to make an unwind segue

From the popup choose Selection Segue - categoryPickerDidPickCategory:,
the name of the unwind action method you just added.

The popup lists the unwind action methods

(If Interface Builder doesn’t let you make a connection, then make sure you’re
really Ctrl-dragging from the Cell, not from its Content View or the label.)

Now when you tap a cell in the category picker, the screen will close and this new
method is called.

➤ Run the app to try it out. That was easy! Well, not quite. Unfortunately, the
chosen category is ignored…

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 112

That’s because categoryPickerDidPickCategory() looks at the selectedCategoryName
property, but that property isn’t filled in anywhere yet.

You need some kind of mechanism that is invoked when the unwind segue is
triggered, at which point you can fill in the selectedCategoryName based on the row
that was tapped.

What might such a mechanism be called? prepare(for:sender:), of course! This
works for segues in both directions.

➤ Add the following method to CategoryPickerViewController.swift:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "PickedCategory" {
 let cell = sender as! UITableViewCell
 if let indexPath = tableView.indexPath(for: cell) {
 selectedCategoryName = categories[indexPath.row]
 }
 }
}

This looks at the selected index-path and puts the corresponding category name
into the selectedCategoryName property.

This logic assumes the unwind segue is named “PickedCategory”, so you still have
to set an identifier on the unwind segue.

Unfortunately, there is no visual representation of that unwind segue in the
storyboard. There is no nice, big arrow that you can click on. To select the unwind
segue you have to locate it in the document outline pane:

You can find unwind segues in the outline pane

➤ Select the unwind segue and go to the Attributes inspector. Give it the
identifier PickedCategory.

➤ Run the app. Now the category picker should work properly. As soon as you tap
the name of a category, the screen closes and the new category name is displayed.

Unwind segues are pretty cool and are often easier than using a delegate protocol,
especially for simple picker screens such as this one.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 113

Improving the user experience
The Tag Location screen is functional but it could do with some polish. These are
the small details that will make your apps a delight to use and stand out from the
competition.

Take a look at the design of the cell with the Description text view:

There is a margin between the text view and the cell border

There is 10-point margin between the text view and the cell border, but because the
background of both the cell and the text view are white the user cannot see where
the text view begins.

It is possible to tap inside the cell but just outside the text view. That is annoying
when you want to start typing: you think that you’re tapping in the text view but
the keyboard doesn’t appear.

There is no feedback to the user that she’s actually tapping outside the text view,
and she will think your app is broken. In my opinion, rightly so.

You’ll have to make the app a little more forgiving. When the user taps anywhere
inside that first cell, the text view should activate, even if the tap wasn’t on the text
view itself.

➤ Add the following two methods in the // MARK: - UITableViewDelegate section in
LocationDetailsViewController.swift:

override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 if indexPath.section == 0 || indexPath.section == 1 {
 return indexPath
 } else {
 return nil
 }
}

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 if indexPath.section == 0 && indexPath.row == 0 {
 descriptionTextView.becomeFirstResponder()
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 114

}

The tableView(willSelectRowAt) method limits taps to just the cells from the first
two sections. Recall that || means “or”, so if the section number equals 0 or when
it equals 1, you accept the tap on the cell. The third section only has read-only
labels anyway, so it doesn’t need to allow taps.

The tableView(didSelectRowAt) method handles the actual taps on the rows. You
don’t need to respond to taps on the Category or Add Photo rows as these cells are
connected to segues.

But if the user tapped in the first row of the first section – the row with the
description text view – then you will give the input focus to that text view. Here you
use &&, meaning “and”, to make sure the tap was in the first section and also on the
first row of that section.

➤ Try it out. Run the app and click or tap somewhere along the edges of the first
cell. Anywhere you tap inside that first cell should now make the text view active
and bring up the keyboard (on the Simulator you may need to press ⌘+K to make
the keyboard visible).

Anything you can do to make screens less frustrating to use is worth putting in the
effort!

Speaking of the text view, once you’ve activated it there’s no way to get rid of the
keyboard again. And because the keyboard takes up half of the screen that can be
a bit annoying.

It would be nice if the keyboard disappeared after you tapped anywhere else on the
screen. As it happens, that is not so hard to add.

➤ Add the following to the end of viewDidLoad():

let gestureRecognizer = UITapGestureRecognizer(target: self,
 action: #selector(hideKeyboard))
gestureRecognizer.cancelsTouchesInView = false
tableView.addGestureRecognizer(gestureRecognizer)

A gesture recognizer is a very handy object that can recognize touches and other
finger movements. You simply create the gesture recognizer object, give it a
method to call when that particular gesture has been observed to take place, and
add the recognizer object to the view.

You’re using a UITapGestureRecognizer, which recognizes simple taps, but there are
several others for swipes, pans, pinches and much more.

Notice the #selector() keyword again:

. . . target: self, action: #selector(hideKeyboard)) . .

You use this syntax to tell the UITapGestureRecognizer that it should call the

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 115

method named by the #selector() whenever the gesture happens.

This pattern is known as target-action and you’ve already been using it all the
time whenever you’ve connected UIButtons, UIBarButtonItems, and other controls to
action methods.

The “target” is the object that the message should be sent to, which is often self,
and “action” is the message to send.

Here you’ve chosen the message hideKeyboard to be sent when a tap is
recognized anywhere in the table view, so you also have to implement a method to
respond to that message.

➤ Add the hideKeyboard() method to LocationDetailsViewController.swift. It
doesn’t really matter where you put it, but below viewDidLoad() is a good place:

func hideKeyboard(_ gestureRecognizer: UIGestureRecognizer) {
 let point = gestureRecognizer.location(in: tableView)
 let indexPath = tableView.indexPathForRow(at: point)

 if indexPath != nil && indexPath!.section == 0
 && indexPath!.row == 0 {
 return
 }

 descriptionTextView.resignFirstResponder()
}

Whenever the user taps somewhere in the table view, the gesture recognizer calls
this method. Conveniently, it also passes a reference to itself as the parameter,
which lets you ask gestureRecognizer where the tap happened.

The gestureRecognizer.location(in: tableView) method returns a CGPoint value.
CGPoint is a common struct that you see all the time in UIKit. It contains two fields,
x and y, that describe a position on the screen.

Using this CGPoint, you ask the table view which index-path is currently displayed
at that position. This is important because you obviously don’t want to hide the
keyboard if the user tapped in the row with the text view! If the user tapped
anywhere else, you do hide the keyboard.

Exercise. Does the logic in the if-statement make sense to you? Explain how this
works.

Answer: It is possible that the user taps inside the table view but not on a cell, for
example somewhere in between two sections or on the section header. In that case
indexPath will be nil, making this an optional (of type IndexPath?). And to use an
optional you need to unwrap it somehow, either with if let or with !.

You only want to hide the keyboard if the index-path for the tap is not section 0,
row 0, which is the cell with the text view. If the user did tap that particular cell,
you bail out of hideKeyboard() with the return statement before the code reaches

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 116

the call to resignFirstResponder().

Note: You don’t want to force unwrap an optional if there’s a chance it might
be nil or you risk crashing the app. Force unwrapping indexPath!.section and
indexPath!.row may look dangerous here, but it is guaranteed to work thanks
to the short-circuiting behavior of the && operator.

If indexPath equals nil, then everything behind the first && is simply ignored.
The condition can never become true anymore if one of the terms is false. So
when the app gets to look at indexPath!.section, you know that the value of
indexPath will never be nil at that point.

An alternative way to write this logic is:

if indexPath == nil ||
 !(indexPath!.section == 0 && indexPath!.row == 0) {
 descriptionTextView.resignFirstResponder()
}

Can you wrap your head around that? Here the if-statement checks for the exact
opposite. The && and || operators are each other’s opposite in Boolean logic and
you can often flip the meaning of a condition around by turning && into || and
introducing the ! not operator.

You don’t need to worry about this so early on in your programming career, but at
some point you’ll have to learn these rules of Boolean logic. They can be mind-
benders!

Of course, you can also use if let to safely unwrap indexPath. So a third way to
write this if-statement is as follows:

if let indexPath = indexPath, indexPath.section != 0 &&
 indexPath.row != 0 {
 return
}
descriptionTextView.resignFirstResponder()

I just wanted to give you a brief glimpse of the various ways you can write the
conditions in if-statements. There’s often more than one way to do something in
Swift, so choose whatever approach you find easiest to understand.

➤ Run the app. Tap in the text view to bring up the keyboard. (If the keyboard
doesn’t come up, press ⌘+K.) Tap anywhere else in the table view to hide the
keyboard again.

The table view can also automatically dismiss the keyboard when the user starts
scrolling. You can enable this in the storyboard.

➤ Open the storyboard and select the table view inside the Tag Location screen. In
the Attributes inspector change the Keyboard option to Dismiss on drag. Now

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 117

scrolling should also hide the keyboard.

The “Dismiss on drag” option for the keyboard

(If this doesn’t work for you, try it on a real device. The keyboard in the Simulator
can be a bit wonky.)

➤ Also try the Dismiss interactively option. Which one do you like best?

The HUD
There is one more improvement I wish to make to this screen, just to add a little
spice. When you tap the Done button to close the screen, the app will show a quick
animation to let the user know it successfully saved the location:

Before you close the screen it shows an animated checkmark

This type of overlay graphic is often called a HUD, for Heads-Up Display. Apps aren’t
quite fighter jets, but often HUDs are used to display a progress bar or spinner
while files are downloading or another long-lasting task is taking place.

You’ll show your own HUD view for a brief second before the screen closes. It adds
a little extra liveliness to the app.

If you’re wondering how you can display anything on top of a table, this HUD is

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 118

simply a UIView subclass. You can add views on top of other views. That’s what
you’ve been doing all along, in fact.

The labels are views that are added on top of the cells, which are also views. The
cells themselves are added on top of the table view, and the table view in turn is
added on top of the navigation controller’s content view.

So far, when you’ve made your own objects, they have always been view controllers
or data model objects, but it’s also possible to make your own views.

Often using the standard buttons and labels is sufficient, but when you want to do
something that is not available as a standard view you can always make your own.
You either subclass UIView or UIControl and do your own drawing. That’s what
you’re going to do for the HUD view as well.

➤ Add a new file to the project using the Swift File template. Name it HudView.

Let’s build a minimal version of this class just so that you can get something on the
screen. When that works, you’ll make it look fancy.

➤ Replace the contents of HudView.swift with the following:

import UIKit

class HudView: UIView {
 var text = ""

 class func hud(inView view: UIView, animated: Bool) -> HudView {
 let hudView = HudView(frame: view.bounds)
 hudView.isOpaque = false

 view.addSubview(hudView)
 view.isUserInteractionEnabled = false

 hudView.backgroundColor = UIColor(red: 1, green: 0, blue: 0,
 alpha: 0.5)
 return hudView
 }
}

The hud(inView, animated) method is known as a convenience constructor. It
creates and returns a new HudView instance.

Normally you would create a new HudView object by writing:

let hudView = HudView()

But using the convenience constructor you’d write:

let hudView = HudView.hud(inView: parentView, animated: true)

A convenience constructor is always a class method, i.e. a method that works on
the class as a whole and not on any particular instance. You can tell because its

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 119

declaration begins with class func instead of just func.

When you call HudView.hud(inView: parentView, animated: true) you don’t have an
instance of HudView yet. The whole purpose of this method is to create an instance
of the HUD view for you, so you don’t have to do that yourself, and to place it on
top of another view.

You can see that making an instance is actually the first thing this method does:

class func hud(inView view: UIView, animated: Bool) -> HudView {
 let hudView = HudView(frame: view.bounds)

 . . .

 return hudView
}

It calls HudView(), or actually HudView(frame) which is an init method inherited
from UIView. At the end of the method that new instance is returned to the caller.

So why use this convenience constructor? As the name says, for convenience.

There are more steps needed than just initializing the view, and by putting these in
the convenience constructor, the caller doesn’t have to worry about any of this.

One of these additional steps is that this method adds the new HudView object as a
subview on top of the “parent” view object. This is the navigation controller’s view
so the HUD will cover the entire screen.

It also sets view’s isUserInteractionEnabled property to false. While the HUD is
showing you don’t want the user to interact with the screen anymore. The user has
already pressed the Done button and the screen is in the process of closing.

Most users will leave the screen alone at this point but there’s always some joker
who wants to try and break things. By setting isUserInteractionEnabled to false
the view eats up any touches and all the underlying views become unresponsive.

Just for testing, the background color of the HUD view is 50% transparent red. That
way you can see it covers the entire screen.

Let’s add code to call this funky new HUD, so that is out of the way.

➤ Change the done() method from LocationDetailsViewController.swift to:

@IBAction func done() {
 let hudView = HudView.hud(inView: navigationController!.view,
 animated: true)
 hudView.text = "Tagged"
}

This creates a HudView object and adds it to the navigation controller’s view with an
animation. You also set the text property on the new object.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 120

Previously, done()dismissed the view controller. For testing purposes you’re not
going to do that anymore. You want to have enough time to see what the HudView
looks like as you’re building it up step-by-step; if you immediately close the screen
after showing the HUD, it will be hard to see what’s going on (unless you have the
ability to slow down time somehow). You’ll put the code that closes the screen back
later.

➤ Run the app. When you press the Done button, the screen will look like this:

The HUD view covers the whole screen

The app is now totally unresponsive because user interaction is disabled.

Often when you’re working with views it’s a good idea to set the background color
to a bright color such as red or blue, so you can see exactly how big the view is.

➤ Remove the backgroundColor line from the hud(inView: animated) method.

➤ Add the following method to HudView.swift:

override func draw(_ rect: CGRect) {
 let boxWidth: CGFloat = 96
 let boxHeight: CGFloat = 96

 let boxRect = CGRect(
 x: round((bounds.size.width - boxWidth) / 2),
 y: round((bounds.size.height - boxHeight) / 2),
 width: boxWidth,
 height: boxHeight)

 let roundedRect = UIBezierPath(roundedRect: boxRect, cornerRadius: 10)
 UIColor(white: 0.3, alpha: 0.8).setFill()
 roundedRect.fill()
}

The draw() method is invoked whenever UIKit wants your view to redraw itself.

Recall that everything in iOS is event-driven. The view doesn’t draw anything on the
screen unless UIKit sends it the draw() event. That means you should never call

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 121

draw() yourself.

Instead, if you want view to redraw, you should send it the setNeedsDisplay()
message. UIKit will then trigger a draw() event when it is ready to perform the
drawing. This may seem strange if you’re coming from another platform. You may
be used to redrawing the screen whenever you feel like it, but on iOS UIKit is in
charge of who gets to draw when.

The above code draws a filled rectangle with rounded corners in the center of the
screen. The rectangle is 96 by 96 points big (so I suppose it’s really a square):

let boxWidth: CGFloat = 96
let boxHeight: CGFloat = 96

This declares two constants you’ll be using in the calculations that follow. You’re
using constants because it’s clearer to refer to the symbolic name boxWidth than the
number 96. That number doesn’t mean much by itself, but “box width” is a pretty
clear description of its purpose.

Note that you force the type of these constants to be CGFloat, which is the type
used by UIKit to represent decimal numbers. When working with UIKit or Core
Graphics (CG, get it?) you use CGFloat instead of the regular Float or Double.

let boxRect = CGRect(
 x: round((bounds.size.width - boxWidth) / 2),
 y: round((bounds.size.height - boxHeight) / 2),
 width: boxWidth,
 height: boxHeight)

There is CGRect again, the struct that represents a rectangle. You use it to calculate
the position for the HUD. The HUD rectangle should be centered horizontally and
vertically on the screen. The size of the screen is given by bounds.size (this really is
the size of HudView itself, which spans the entire screen).

The above calculation uses the round() function to make sure the rectangle doesn’t
end up on fractional pixel boundaries because that makes the image look fuzzy.

let roundedRect = UIBezierPath(roundedRect: boxRect, cornerRadius: 10)
UIColor(white: 0.3, alpha: 0.8).setFill()
roundedRect.fill()

UIBezierPath is a very handy object for drawing rectangles with rounded corners.
You just tell it how large the rectangle is and how round the corners should be.
Then you fill it with an 80% opaque dark gray color.

➤ Run the app. The result looks like this:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 122

The HUD view has a partially transparent background

There are two more things to add to the HUD, a checkmark and a text label. The
checkmark is an image.

➤ The Resources folder for this tutorial has two files in the Hud Images folder,
Checkmark@2x.png and Checkmark@3x.png. Add these files to the asset
catalog, Assets.xcassets.

You can do this with the + button or simply drag them from Finder into the Xcode
window with the asset catalog open.

➤ Add the following code to the bottom of draw():

if let image = UIImage(named: "Checkmark") {
 let imagePoint = CGPoint(
 x: center.x - round(image.size.width / 2),
 y: center.y - round(image.size.height / 2) - boxHeight / 8)

 image.draw(at: imagePoint)
}

This loads the checkmark image into a UIImage object. Then it calculates the
position for that image based on the center coordinate of the HUD view (center)
and the dimensions of the image (image.size).

Finally, it draws the image at that position.

➤ Run the app to see the HUD view with the image:

The HUD view with the checkmark image

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 123

Failable initializers
To create the UIImage you used if let to unwrap the resulting object. That’s
because UIImage(named) is a so-called failable initializer.

It is possible that loading the image fails, because there is no image with the
specified name or the file doesn’t really contain a valid image. You can’t fool
UIImage into loading something that isn’t an image!

That’s why UIImage’s init(named) method is really defined as init?(named). The
question mark indicates that this method returns an optional. If there was a
problem loading the image, it returns nil instead of a brand spanking new UIImage
object.

You’ll see these failable initializers through the iOS frameworks. One that you have
encountered before is init?(coder). Whenever it is possible that creating a new
object will fail, the responsible init method will return an optional that you need to
unwrap before you can use it.

Usually to draw text in your own view you’d add a UILabel object as a subview and
let UILabel do all the hard work. However, for a view as simple as this you can also
do your own text drawing.

➤ Complete draw() by adding the following code:

let attribs = [NSFontAttributeName: UIFont.systemFont(ofSize: 16),
 NSForegroundColorAttributeName: UIColor.white]

let textSize = text.size(attributes: attribs)

let textPoint = CGPoint(
 x: center.x - round(textSize.width / 2),
 y: center.y - round(textSize.height / 2) + boxHeight / 4)

text.draw(at: textPoint, withAttributes: attribs)

When drawing text you first need to know how big the text is, so you can figure out
where to position it. String has a bunch of handy methods for doing both.

First, you create the UIFont object that you’ll use for the text. This is a “System”
font of size 16. As of iOS 9, the system font is San Francisco (on iOS 8 and before it
was Helvetica Neue, which looks very similar).

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 124

You also choose a color for the text, plain white. The font and foreground color are
placed into a dictionary named attribs (short for “attributes”).

Recall that a dictionary stores key-value pairs. To make a dictionary you write:

let myDictionary = [key1: value1,
 key2: value2,
 key3: value3]

So in the dictionary from draw(), the NSFontAttributeName key is associated with
the UIFont object, and the NSForegroundColorAttributeName key is associated with
the UIColor object. In other words, the attribs dictionary describes what the text
will look like.

You use these attributes and the string from the text property to calculate how
wide and tall the text will be. The result ends up in the textSize constant, which is
of type CGSize. (As you can tell, CGPoint, CGSize, and CGRect are types you use a lot
when making your own views.)

Finally, you calculate where to draw the text (textPoint), and then draw it. Quite
simple, really.

➤ Run the app to try it out. Lookin’ good!

The HUD view with the checkmark and the text

➤ Make sure to test the HUD on the different Simulators. No matter the device
dimensions, the HUD should always appear centered in the screen.

OK, this shows a rounded box with a checkmark, but it’s still far from spectacular.
Time to liven it up a little with an animation.

You’ve already seen a bit about animations before – they’re really easy to add.

➤ Add the show(animated) method to HudView.swift:

func show(animated: Bool) {
 if animated {
 // 1

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 125

 alpha = 0
 transform = CGAffineTransform(scaleX: 1.3, y: 1.3)
 // 2
 UIView.animate(withDuration: 0.3, animations: {
 // 3
 self.alpha = 1
 self.transform = CGAffineTransform.identity
 })
 }
}

In the Bull’s Eye tutorial you made a crossfade animation using the Core Animation
framework. UIView, however, has its own animation mechanism. That still uses Core
Animation behind the scenes but it’s a little more convenient to use.

The standard steps for doing UIView-based animations are as follows:

1. Set up the initial state of the view before the animation starts. Here you set
alpha to 0, making the view fully transparent. You also set the transform to a
scale factor of 1.3. We’re not going to go into depth on transforms here, but
basically this means the view is initially stretched out.

2. Call UIView.animate(withDuration: . . .) to set up an animation. You give this
a closure that describes the animation. Recall that a closure is a piece of inline
code that is not executed right away. UIKit will animate the properties that you
change inside the closure from their initial state to the final state.

3. Inside the closure, set up the new state of the view that it should have after the
animation completes. You set alpha to 1, which means the HudView is now fully
opaque. You also set the transform to the “identity” transform, restoring the
scale back to normal. Because this code is part of a closure, you need to use
self to refer to the HudView instance and its properties. That’s the rule for
closures.

The HUD view will quickly fade in as its opacity goes from fully transparent to fully
opaque, and it will scale down from 1.3 times its original size to its regular width
and height.

This is only a simple animation but it looks quite smart.

➤ Change the hud(inView, animated) method to call show(animated) just before it
returns:

class func hud(inView view: UIView, animated: Bool) -> HudView {
 . . .
 hudView.show(animated: animated)
 return hudView
}

➤ Run the app and marvel at the magic of UIView animation.

You can actually do one better. iOS has something called “spring” animations, which

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 126

bounce up and down and are much more visually interesting than the plain old
animations. Using them is very simple.

➤ Replace the UIView.animate(withDuration: . . .) code with the following:

UIView.animate(withDuration: 0.3, delay: 0, usingSpringWithDamping: 0.7,
 initialSpringVelocity: 0.5, options: [], animations: {
 self.alpha = 1
 self.transform = CGAffineTransform.identity
 },
 completion: nil)

The code in the closure is still the same – it sets alpha to 1 and restores the identity
transform – but this new animation method has a lot more options. Feel free to play
with these options to see what they do.

➤ Run the app and watch it bounce. Actually, the effect is very subtle, but subtle is
good when it comes to user interfaces. You don’t want your users to get seasick
from using the app!

Back to LocationDetailsViewController… You still need to close the screen when
the user taps Done.

There’s a challenge here: you don’t want to dismiss the screen right away. It won’t
look very good if the screen already closes before the HUD is finished animating.
You didn’t spend all that time writing HudView for nothing – you want to give your
users a chance to see it.

➤ Add a new import at the top of LocationDetailsViewController.swift:

import Dispatch

This imports the Grand Central Dispatch framework, or GCD for short. GCD is a
very handy but somewhat low-level library for handling asynchronous tasks. Telling
the app to wait for a few seconds is a perfect example of such an “async” task.

➤ Add these lines to the bottom of the done() action method:

let delayInSeconds = 0.6
DispatchQueue.main.asyncAfter(deadline: .now() + delayInSeconds, execute:
{
 self.dismiss(animated: true, completion: nil)
})

Believe it or not, these incantations tells the app to close the Tag Location screen
after 0.6 seconds.

The magic happens in DispatchQueue.main.asyncAfter(). This function takes a
closure as its final parameter. Inside that closure you tell the view controller to
dismiss itself. This doesn’t happen right away, though. That’s the exciting thing
about closures: even though this code sits side-by-side with all the other code in
the method, everything that’s inside the closure is ignored for now and kept for a

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 127

later time.

DispatchQueue.main.asyncAfter() uses the time given by .now() + delayInSeconds
to schedule the closure for some point in the future. Until then, the app just sits
there twiddling its thumbs. (By the way, .now() is a shortcut for
DispatchTime.now(). Swift’s type inference already knows that the type of the when:
parameter is always a DispatchTime object, so you don’t have to mention it
explicitly.)

After 0.6 seconds, the code from the closure finally runs and the screen closes.

Note: I spent some time tweaking that number. The HUD view takes 0.3
seconds to fully fade in and then you wait another 0.3 seconds before the
screen disappears. That felt right to me. You don’t want to close the screen too
quickly or the effect from showing the HUD is lost, but it shouldn’t take too
long either or it will annoy the user. Animations are cool but they shouldn’t
make the app more frustrating to use!

➤ Run the app. Press the Done button and watch how the screen disappears. This
looks pretty smooth, if I do say so myself.

Now, I don’t know about you but I find this Grand Central Dispatch stuff to be a bit
messy. So let’s clean up the code and make it easier to understand.

➤ Add a new file to the project using the Swift File template. Name the file
Functions.swift.

➤ Replace the contents of the new file with:

import Foundation
import Dispatch

func afterDelay(_ seconds: Double, closure: @escaping () -> ()) {
 DispatchQueue.main.asyncAfter(deadline: .now() + seconds,
 execute: closure)
}

That looks very much like the code you just added to done(), except it now lives in
its own function, afterDelay(). This is a free function, not a method inside an
object, and as a result it can be used from anywhere in your code.

Take a good look at afterDelay()’s second parameter, the one named closure. Its
type is () -> (). That’s not some weird emoticon; it is Swift notation for a
parameter that takes a closure with no arguments and no return value.

The -> symbol means that the type represents a closure. The type for a closure
generally looks like this:

(parameter list) -> return type

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 128

In this case, both the parameter list and the return value are empty, (). This can
also be written as Void -> Void but I like the empty parentheses better.

So whenever you see a -> in the type annotation for a parameter, you know that
this function takes a closure as one of its parameters.

afterDelay() simply passes this closure along to DispatchQueue.main.asyncAfter().

The annotation @escaping is necessary for closures that are not performed
immediately, so that Swift knows that it should hold on to this closure for a while.

You may be wondering why you’re going through all this trouble. No fear! The
reason why will become apparent after you’ve made the following change…

➤ Go back to LocationDetailsViewController.swift and change done() to:

@IBAction func done() {
 let hudView = HudView.hud(inView: navigationController!.view,
 animated: true)
 hudView.text = "Tagged"

 afterDelay(0.6, closure: {
 self.dismiss(animated: true, completion: nil)
 })
}

Now that’s the power of Swift! It only takes one look at this code to immediately
understand what it does. After a delay, something happens.

By moving the nasty GCD stuff into a new function, afterDelay(), you have added a
new abstraction into your code that makes it much easier to follow. Writing good
programs is all about finding the right abstractions.

Note: Because the code to dismiss the view controller sits in a closure it needs to
use self to call the method. Inside closures you always need to use self explicitly.

You can make this read even more naturally. Change the code to:

afterDelay(0.6) {
 self.dismiss(animated: true, completion: nil)
}

Now the closure sits outside of the call to afterDelay().

Swift has a handy rule that says you can put a closure behind a function call if it’s
the last parameter. This is known as trailing closure syntax. You will usually see
closures being used in this manner because it reads the nicest.

By the way, you can remove the import Dispatch line again from
LocationDetailsViewController.swift. This file no longer uses GCD directly and
therefore doesn’t need to import the framework.

➤ Run the app again to make sure the timing still works. Boo-yah!

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 129

You can find the project files for this section under 02 – Tagging Locations in the
tutorial’s Source Code folder.

Value types and reference types
A type walks into a bar. “Do you have any variables?” he asks.

“Well, I don’t know if it will be of much value,” says the bartender, “but I can give
you a reference!”

Anyway… Swift makes a distinction between value types and reference types and
it uses different rules for each.

Objects that are made from classes are reference types. Anything else – all the
basic types such as Int, Bool, Float and Double, String, Array and Dictionary, as
well as enums – are all value types.

So what exactly is the difference between a value type and a reference type?

When you declare a variable as an Int or a CLLocationCoordinate2D – both value
types – the compiler reserves a small portion of memory to hold the value that you
wish to store. For an Int that is 8 bytes, for a CLLocationCoordinate2D that is 16
bytes (on a 64-bit CPU such as in the iPhone 5s and later models).

Variables for reference types are no different. When you create a UILabel outlet, for
example, the compiler also reserves 8 bytes of memory, exactly the same as for an
Int. But a label can hold several lines of text – surely that won’t all fit into those
measly 8 bytes?

When you put some values into these variables, what happens is this:

The label variable contains a reference to a UILabel object

The value 1337 is put directly into number’s memory but the value of label is some
weird number. It sure doesn’t look like a text label. That number is not the actual
UILabel object but the memory address of where that UILabel object lives. It is a
reference to the label object.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 130

Every byte in memory has its own unique address, and in this case address
58741002 refers to the location in memory of the first byte of the UILabel object.

Obviously the 8 bytes that are reserved for the label variable are not enough to
hold a UILabel object with the text "Programmers are the best!" and all the other
label properties such as the text color.

So when the UILabel object is allocated, the computer puts it somewhere else in
memory and returns the address of that memory location. That address – PO Box
58741002, Mike’s iPhone, USA – is what gets put into the variable.

It’s quite useful to think of a reference as a postal address. Your house is the actual
object, but not every one of your acquaintances has a copy of your house. That
would be silly. Instead, these people have a reference to your house: your address.
To access your house (for example, to come over and eat ice cream), they look up
the address so they can find where you live.

Don’t worry if the distinction between value type and reference type doesn’t quite
make sense to you yet. It’s a very powerful idea in computing and powerful ideas
can take a while to sink in.

What you do need to know about the difference between value types and
references types is this:

Rule 1. When you make a constant with let, you cannot change a value type once
you have given it a value:

let coord1 = CLLocationCoordinate2D(latitude: 0, longitude: 0)
coord1.latitude = 37.33233141 // error

var coord2 = CLLocationCoordinate2D(latitude: 0, longitude: 0)
coord2.latitude = 37.33233141 // OK because you used “var”

But the object from a reference type can always be changed, even if you used let.
For example:

let label = UILabel()
label.text = "Hello, world!" // OK
label.text = "I like change" // OK

What is constant is the reference itself. In other words you cannot put a new object
into it:

let newLabel = UILabel()
label = newLabel // error

Rule 2. When you put an object with a value type into a new variable or constant,
it is copied. Arrays are value types in Swift. That means when you put an array into
a new variable it will actually make a copy:

var a = [1, 2, 3]

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 131

let b = a
a.append(4)
print(a) // prints [1, 2, 3, 4]
print(b) // prints [1, 2, 3]

This doesn’t happen with a reference type. The object itself isn’t copied, only the
reference:

var firstLabel = UILabel()
firstLabel.text = "Programmers are the best!"

var secondLabel = firstLabel
secondLabel.text = "I like ice cream"

print(firstLabel.text) // prints “I like ice cream”

What happens is that secondLabel points to the same address as firstLabel, and
therefore putting a new string in secondLabel’s text property changes it for both.

Both label variables refer to the same object

Remember, only objects made from classes are reference types. Everything else is a
value type.

Object ownership
Objects are rarely hermits, off by themselves on a mountain somewhere. Your apps
will have many objects that all need to work together. They are a very cooperative
bunch!

The relationships between the objects in your app are described by the object
graph. For example, the CurrentLocationViewController has relationships with
several objects:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 132

Some of the objects that CurrentLocationViewController owns

These are its instance variables and constants, in other words the objects it “owns”.
That’s not the whole story. The CurrentLocationViewController itself is also owned
by some object, as it belongs to a UITabBarController, which in turn belongs to the
UIWindow.

The UITabBarController owns CurrentLocationViewController

This is only a small part of the object graph for the app. It shows the ownership
relations between the various objects. (Don’t confuse this diagram with the class
hierarchy, which shows how the types of the objects are related, but not the objects
themselves.)

Object ownership is an important topic in iOS programming. You need to have a
clear picture of which objects own what other objects, as the existence of those
objects depends on it – and so does the proper functioning of your app!

An object that no longer has any owners is immediately deallocated – destroyed! –
and that’s a problem if your app does not expect that to happen. On the other
hand, if an object has too many owners it will stay in memory forever, which may
cause your app to run out of free memory and crash also.

So what does it mean to “own” an object? This is where the concept of strong and
weak references comes in.

Most of the time when you declare a variable that holds a reference object, you are

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 133

creating a strong relationship. This variable assumes ownership of the object, a
responsibility that it shares with any other variables referencing the same object.

var image: UIImage // a strong variable

In a weak relationship, there is no such ownership. A variable with a weak
relationship to an object is not helping to keep this object alive. You need to
explicitly declare this with the weak keyword (and make it an optional):

weak var weakImage: UIImage? // a weak variable

The lifetime of an object is determined by how many owners it has at any given
point. As soon as there are no more strong references to an object, no matter how
many weak references there still are, the object is ruthlessly disposed of.

That’s also when the object’s deinit method is called, giving the object one last
chance to get its affairs in order before it meets its maker.

So what’s the point of weak?

It primarily exists to avoid the problem of ownership cycles where two objects
end up owning each other. Because these objects keep each other alive, the app
will never reclaim their memory after they’ve served their purpose. This slowly eats
up the available memory for the app – the dreaded memory leak! – until there is no
free memory left and the app crashes.

In the previous tutorial you learned to make delegates weak to avoid this kind of
situation. Later on you’ll see another example of an ownership cycle and how to fix
it (hint: you’ll use a weak reference).

Another common use of weak is with @IBOutlet properties. The reason outlets are
weak is that the view controller isn’t really their owner; instead, the outlets belong
to the view controller’s top-level view.

Nothing untoward will happen if you have strong outlets, but by declaring them
weak the view controller says, “I’m only renting these outlets, I don’t need to own
them.”

Weak relationships have a cool side effect. If you have a weak reference to an
object and that object is deallocated because its previous owners have all given up
ownership, your reference automatically becomes nil.

That’s a good thing too because if it didn’t, you’d be pointing to a dead object and
all sorts of mayhem would break loose if you tried to use it. (Using such “zombie”
objects is a common cause of crashes in languages that don’t have weak
references.)

This is also why weak variables must always be optionals (either ? or !) because
they may become nil at some point.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 134

Note: Swift has a third type of relationship: unowned. Like weak this is used to
break cycles. The difference is that unowned variables shouldn’t be nil and
therefore don’t have to be optionals. It’s less common than weak, but you’ll
probably run into unowned variables here or there. Just think of them as weak –
it’s what I do.

To recap: if you want to keep an object around for a while, you should store it with
a strong relationship. But if you don’t need to own the object and you don’t mind it
going away at some point, use a weak or unowned reference.

Let’s look at a situation where there is more than one owner of an object.

For example, when the user taps the Tag Location button, the Current Location view
controller passes a CLPlacemark object to the Location Details view controller. Both
references are strong so from that moment on, the Location Details view controller
assumes shared ownership of it. Now the CLPlacemark has two owners.

It’s important to realize that the concept of shared ownership and object
relationships only applies to reference types. Value types are always copied from
one place to the other, so they never have more than one owner.

LocationDetailsViewController also has a coordinate property that is filled in upon
the segue from the Tap Location button. This is a CLLocationCoordinate2D, a struct
and therefore a value type.

In prepare(for:sender:) the following happens:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 . . .
 controller.coordinate = location!.coordinate
 controller.placemark = placemark
}

The line that puts location!.coordinate into controller.coordinate makes a copy
of that CLLocationCoordinate2D struct. Each view controller now has its own unique
copy of those GPS coordinates (it’s a value type!).

For placemark the only thing that is copied is the reference. Both view controllers
point to the same CLPlacemark object (or nil if placemark has no value).

The coordinate is copied but the placemark is a reference

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 135

Make sense? Great! If not, read it again. ;-)

Seriously though, if you understand these concepts you’re well on your way to
programming greatness. And if not, don’t give up. These can be tough ideas to
grok. Just keep going until it does make sense (and I promise it will!).

Note: If you want an object with a reference type to be copied when it is
assigned to another variable, you can declare it as @NSCopying. This first
creates a duplicate of the object and puts that in the new variable. Now the
two variables each refer to their own object. @NSCopying is more of an
Objective-C thing, but now you know what it’s for should you come across it.

Storing the locations with Core Data
At this point you have an app that can obtain GPS coordinates for the user’s current
location. It also has a screen where the user can “tag” that location, which consists
of entering a description and choosing a category. Later on, you’ll also allow the
user to pick a photo.

The next feature is to make the app remember the locations that the user has
tagged and show them in a list.

The Locations screen will look like this:

The Locations screen

You have to persist the data for these captured locations somehow, because they
should be remembered even when the app terminates.

The last time you did this, you made data model objects that conformed to the

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 136

NSCoding protocol and saved them to a .plist file using NSKeyedArchiver. That works
fine but in this lesson I want to introduce you to a framework that can take a lot of
work out of your hands: Core Data.

Core Data is an object persistence framework for iOS apps. If you’ve looked at Core
Data before, you may have found the official documentation a little daunting but
the principle is quite simple.

You’ve learned that objects get destroyed when there are no more references to it.
In addition, all objects get destroyed when the app terminates.

With Core Data, you can designate some objects as being persistent so they will
always be saved to a data store. Even when all references to such a managed
object are gone and the instance gets destroyed, its data is still safely stored in
Core Data and you can get it back at any time.

If you’ve worked with databases before, then you might be tempted to think of
Core Data as a database but that’s a little misleading. In some respects the two are
similar but Core Data is about storing objects, not relational tables. It is just
another way to make sure the data from certain objects doesn’t get deleted when
these objects are deallocated or the app terminates.

Adding Core Data to the app
Core Data requires the use of a data model. This is a special file that you add to
your project to describe the objects that you want to persist. These managed
objects, unlike regular objects, will keep their data in the data store unless you
explicitly delete them.

➤ Add a new file to the project. Choose the Data Model template under the Core
Data section (scroll down in the template chooser):

Adding a Data Model file to the project

➤ Save it as DataModel.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 137

This will add a new file to the project, DataModel.xcdatamodeld.

➤ Click DataModel.xcdatamodeld in the Project navigator to open the Data Model
editor:

The empty data model

For each object that you want Core Data to manage, you have to add an entity.

An entity describes which data fields your objects will have. In a sense it serves the
same purpose as a class but specifically for Core Data’s data store. (If you’ve
worked with SQL databases before, you can think of an entity as a table.)

This app will only have one entity, Location, which stores all the properties for a
location that the user tagged. Each Location will keep track of the following data:

• latitude and longitude

• placemark (the street address)

• the date when the location was tagged

• the user’s description

• category

These are the items from the Tag Location screen, except for the photo. Photos are
potentially very big and can take up several megabytes of storage space. Even
though the Core Data store can handle big “blobs” of data, it is usually better to
store photos as separate files in the app’s Documents directory. More about that
later.

➤ Click the Add Entity button at the bottom of the data model editor. This adds a
new entity under the ENTITIES heading. Name it Location. (You can rename the
entity by clicking its name or from the Data Model inspector pane on the right.)

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 138

The new Location entity

Inside the entity are three sections: Attributes, Relationships and Fetched
Properties. The Attributes are the entity’s data fields.

This app only has one entity, but often apps will have many entities that are all
related to each other somehow. With Relationships and Fetched Properties you can
tell Core Data how your objects depend on each other.

For this app you will only use the Attributes section.

➤ Click the Add Attribute button at the bottom of the editor, or the small + button
below the Attributes section. Name the new attribute latitude and set its Type to
Double:

Choosing the attribute type

Attributes are basically the same as instance variables and therefore they have a
type. You’ve seen earlier that the latitude and longitude coordinates really have the
data type Double, so that’s what you’re choosing for the attribute as well.

Note: Don’t let the change in terminology scare you. Just think:

entity = object (or class)

attribute = variable

If you’re wondering where you’ll define methods in Core Data, then the answer
is: you don’t. Core Data is only for storing the data portion of objects. That is

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 139

what an entity describes: the data of an object, and optionally how that object
relates to other objects if you use Relationships and Fetched Properties.

In a short while you are going to define your own Location class by creating a
Swift file, just as you’ve been doing all along. Because it describes a managed
object, this class will be associated with the Location entity in the data model.
But it’s still a regular class, so you can add your own methods to it.

➤ Add the other attributes to the Location entity:

• longitude, type Double

• date, type Date

• locationDescription, type String

• category, type String

• placemark, type Transformable

The data model should look like this when you’re done:

All the attributes of the Location entity

Why didn’t you just call it “description” instead of “locationDescription”? As it turns
out, description is the name of a method from NSObject. If you try to name an
attribute “description”, then it will cause a naming conflict with that method. Xcode
will give you an error message if you try to do this.

The type of the placemark attribute is Transformable. Core Data only supports a
limited number of data types right out the box, such as String, Double, and Date.
The placemark is a CLPlacemark object and is not in the list of supported data types.

Fortunately, Core Data has a provision for handling arbitrary data types. Any class
that conforms to the NSCoding protocol can be stored in a Transformable attribute
without additional work. Fortunately for us, CLPlacemark does conform to NSCoding,
so you can store it in Core Data with no trouble.

By default, entity attributes are optional, meaning they can be nil. In our app, the
only thing that can be nil is the placemark, in case reverse geocoding failed. It’s a
good idea to embed this constraint in the data model.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 140

➤ Select the category attribute. In the inspectors panel, switch to the Data Model
inspector (third tab). Uncheck the Optional setting:

Making the category attribute non-optional

➤ Repeat this for the other attributes, except for placemark. (Tip: you can select
multiple attributes at the same time.)

➤ Press ⌘+S to save your changes. Xcode is supposed to do this automatically, but
I’ve found the data model editor to be a little unreliable at times. Better safe than
sorry!

You’re done with the data model, but there’s one more thing I’d like to point out.

➤ Click on the Location entity to select it and go to the Data Model inspector.

The Data Model inspector

The Class field currently says “NSManagedObject”. When you retrieve a Location
entity from Core Data, it gives you an object of the class NSManagedObject.

That is the base class for all objects that are managed by Core Data. Regular
objects inherit from NSObject, but objects from Core Data extend NSManagedObject.

Because using NSManagedObject directly is a bit limiting, you are going to use your
own class instead. You’re not required to make your own classes for your entities,
but it does make Core Data easier to use.

Now when you retrieve a Location entity from the data store, Core Data doesn’t
give you an NSManagedObject but an instance of your own Location class.

➤ In the inspector, change Codegen to Manual/None.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 141

Note: As of version 8, Xcode can generate the source code for the entity’s
class automatically from the data model. The Codegen setting determines how
it does this. For the purposes of this tutorial you’re not using the automatic
code generation, which is why you’re setting Codegen to Manual/None. It’s
useful to understand how to make your own NSManagedObject subclass rather
than relying on Xcode magic.

Even though you won’t be using automatic class generation, Xcode can still lend a
helping hand.

➤ From the menu bar, choose Editor → Create NSManagedObject Subclass.

The assistant will now ask you for which data model and which entity you wish to
create the class.

➤ Select DataModel and click Next. In the next step, make sure Location is
selected and click Next again.

Select the Location entity

➤ Choose a location to save the source files. Press Create to finish.

This adds two new files to the project. The first one is named Location
+CoreDataClass.swift and looks something like this:

import Foundation
import CoreData

public class Location: NSManagedObject {

}

As you can see in the class line, the Location class extends NSManagedObject
instead of the regular NSObject.

The second file that got created is Location+CoreDataProperties.swift:

import Foundation
import CoreData

extension Location {
 @nonobjc public class func fetchRequest() -> NSFetchRequest<Location> {
 return NSFetchRequest<Location>(entityName: "Location");

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 142

 }

 @NSManaged var latitude: Double
 @NSManaged var longitude: Double
 @NSManaged var date: NSDate?
 @NSManaged var locationDescription: String?
 @NSManaged var category: String?
 @NSManaged var placemark: NSObject?
}

In this file, Xcode has created properties for the attributes that you specified in the
Data Model editor. But what is this extension thing?

With an extension you can add additional functionality to an existing object without
having to change the source code for that object. This even works when you don’t
actually have the source code for those objects. Later on in the tutorial you’ll see an
example of how you can use an extension to add new methods to objects from the
iOS frameworks.

Here, the extension is used for another purpose. If you change your Core Data
model at some later time and you want to automatically update the code to match
those changes, then you can choose Create NSManagedObject Subclass again
and Xcode will only overwrite what is in Location+CoreDataProperties.swift but
not anything you added to Location+CoreDataClass.swift.

So it’s not a good idea to make changes to Location+CoreDataProperties.swift
if you plan on overwriting this file later. Unfortunately, Xcode made a few small boo-
boos in the types of the properties, so you’ll have to make some changes to this file
anyway.

The first thing to fix is the placemark variable. Because you made placemark a
Transformable attribute, Xcode doesn’t really know what kind of object this will be,
so it chose the generic type NSObject. You know it’s going to be a CLPlacemark
object, so you can make things easier for yourself by changing it.

➤ First import Core Location into Location+CoreDataProperties.swift:

import CoreLocation

➤ Then change the placemark property to:

@NSManaged var placemark: CLPlacemark?

You’re adding a question mark too, because placemark is optional.

➤ Also change the date property from NSDate to Date:

@NSManaged var date: Date

The NSDate class is what Objective-C uses to represent dates but in Swift we work
with Date, without the “NS”. It is also no longer an optional.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 143

➤ Finally, remove the question marks behind the category and locationDescription
properties. Earlier you told Core Data these attributes were not optionals, so they
don’t need the question mark.

Because this is a managed object, and the data lives inside a data store, Swift will
handle Location’s variables in a special way. The @NSManaged keyword tells the
compiler that these properties will be resolved at runtime by Core Data. When you
put a new value into one of these properties, Core Data will place that value into
the data store for safekeeping, instead of in a regular instance variable.

This concludes the definition of the data model for this app. Now you have to hook
it up to a data store.

The data store
On iOS, Core Data stores all of its data into an SQLite database (pronounced “SQL
light”). It’s OK if you have no idea what SQLite is. You’ll take a peek into that
database later, but you don’t really need to know what goes on inside the data
store in order to use Core Data.

However, you do need to initialize this data store when the app starts. The code for
that is the same for just about any app that uses Core Data and it goes in the app
delegate class.

The app delegate is the object that gets notifications that concern the application
as a whole. This is where iOS notifies the app that it has started up, for example.

You’re going to make a few changes to the project’s AppDelegate class.

➤ Open AppDelegate.swift and import the Core Data framework at the very top:

import CoreData

➤ Add the following code inside the AppDelegate class:

lazy var persistentContainer: NSPersistentContainer = {
 let container = NSPersistentContainer(name: "DataModel")
 container.loadPersistentStores(completionHandler: {
 storeDescription, error in
 if let error = error {
 fatalError("Could load data store: \(error)")
 }
 })
 return container
}()

This is the code you need to load the data model that you’ve defined earlier, and to
connect it to an SQLite data store.

The goal here is to create a so-called NSManagedObjectContext object. That is the
object you’ll use to talk to Core Data. To get that NSManagedObjectContext object,

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 144

the app needs to do several things:

1. Create an NSManagedObjectModel from the Core Data model you created earlier.
This object represents the data model during runtime. You can ask it what sort
of entities it has, what attributes these entities have, and so on. In most apps
you don’t need to use the NSManagedObjectModel object directly.

2. Create an NSPersistentStoreCoordinator object. This object is in charge of the
SQLite database.

3. Finally, create the NSManagedObjectContext object and connect it to the
persistent store coordinator.

Together, these objects are also known as the “Core Data stack”.

In iOS 9 you had to perform these steps by hand, which could get a little messy.
Fortunately for us there is a new object in iOS 10, the NSPersistentContainer, that
takes care of everything.

That doesn’t mean you may immediately forget what you just learned about the
NSManagedObjectModel and the NSPersistentStoreCoordinator, but it does save you
from writing a bunch of code.

The code that you just added creates an instance variable persistentContainer of
type NSPersistentContainer. To get the NSManagedObjectContext that we’re after,
you can simply ask the persistentContainer for its viewContext property.

➤ For convenience, add a new property to get the NSManagedObjectContext from the
persistent container:

lazy var managedObjectContext: NSManagedObjectContext =
 self.persistentContainer.viewContext

Now we’re ready to start using Core Data!

➤ Build the app to make sure it compiles without errors. If you run it you won’t
notice any difference because you’re not actually using Core Data anywhere yet.

Passing around the context
When the user presses the Done button in the Tag Location screen, the app
currently just closes the screen. Let’s improve on that and make tapping Done save
a new Location object into the Core Data store.

I mentioned the NSManagedObjectContext object. This is the object that you use to
talk to Core Data. It is often described as the “scratchpad”. You first make your
changes to the context and then you call its save() method to store those changes
permanently in the data store.

That means every object that needs to do something with Core Data needs to have
a reference to the NSManagedObjectContext object.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 145

➤ Switch to LocationDetailsViewController.swift. Import Core Data into this file
and then add a new instance variable:

var managedObjectContext: NSManagedObjectContext!

The problem is: how do you put the NSManagedObjectContext object from the app
delegate into that property?

The context object is created by AppDelegate, but AppDelegate has no reference to
the LocationDetailsViewController.

That’s not so strange as the Location Details view controller doesn’t exist until the
user taps the Tag Location button. Prior to initiating that segue, there simply is no
living LocationDetailsViewController object.

The answer is to pass along the NSManagedObjectContext object during the segue
that presents the LocationDetailsViewController. The obvious place for that is
prepare(for:sender:) in CurrentLocationViewController.

But now you need to find a way to get the NSManagedObjectContext object into the
CurrentLocationViewController in the first place.

I come across a lot of code that does the following:

let appDelegate = UIApplication.sharedApplication().delegate
 as! AppDelegate
let context = appDelegate.managedObjectContext

// do something with the context

From anywhere in your source code you can get a reference to the context simply
by asking the AppDelegate for its managedObjectContext property. Sounds like a good
solution, right?

Not quite… Suddenly all your objects are dependent on the app delegate. This
introduces a dependency that can make your code messy really quickly.

Bad: All classes depend on AppDelegate

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 146

As a general design principle, it is best to make your classes depend on each other
as little as possible. The fewer interactions there are between the different parts of
your program, the simpler it is to understand.

If many of your classes need to reach out to some shared object such as the app
delegate, then you may want to rethink your design.

A better solution is to give the NSManagedObjectContext to each object that needs it.
Now all the arrows in the diagram go just one way:

Good: The context object is passed from one object to the next

Using this architecture, AppDelegate gives the managed object context to
CurrentLocationViewController, which in turn will pass it on to the
LocationDetailsViewController when it performs the segue. This technique is
known as dependency injection.

This means CurrentLocationViewController needs its own property for the
NSManagedObject context.

➤ Add the following property to CurrentLocationViewController.swift:

var managedObjectContext: NSManagedObjectContext!

Don’t forget to also import Core Data or Xcode won’t know what you mean by
NSManagedObjectContext.

➤ Add the following to prepare(for:sender:), so that it passes on the context to
the Tag Location screen:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "TagLocation" {
 . . .

 controller.coordinate = location!.coordinate
 controller.placemark = placemark
 controller.managedObjectContext = managedObjectContext // add this

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 147

 }
}

This should also explain why the managedObjectContext variable is declared as an
implicitly unwrapped optional with the type NSManagedObjectContext!.

You should know by now that variables in Swift must always have a value. If they
can be nil – which means “not a value” – then the variable must be made optional.

If you were to declare managedObjectContext without the exclamation point,

var managedObjectContext: NSManagedObjectContext

then Swift demands you give it a value inside an init method. For objects loaded
from a storyboard, such as view controllers, that is init?(coder).

However, prepare(for:sender:) happens after the new view controller is
instantiated, long after the call to init?(coder). As a result, inside init?(coder)
you can’t know yet what the value for managedObjectContext is.

You have no choice but to leave the managedObjectContext variable nil for a short
while until the segue happens, and therefore it must be an optional.

You could also have declared it like this:

var managedObjectContext: NSManagedObjectContext?

The difference between ? and ! is that the former requires you to manually unwrap
the value with if let every time you want to use it.

That gets annoying fast, especially when you know that managedObjectContext will
get a proper value during the segue and that it will never become nil afterwards
again. In that case, the exclamation mark is the best type of optional to use.

These rules for optionals may seem very strict – and possibly confusing – when
you’re coming from another language such as Objective-C, but they are there for a
good reason. By only allowing certain variables to have no value, Swift can make
your programs safer and reduce the number of programming mistakes.

The fewer optionals you use, the better, but sometimes you can’t avoid them – as
in this case with managedObjectContext.

AppDelegate.swift now needs some way to pass the NSManagedObjectContext
object to CurrentLocationViewController.

Unfortunately, Interface Builder does not allow you to make outlets for your view
controllers on the App Delegate. Instead, you have to look up these view controllers
by digging through the storyboard.

➤ Change the application(didFinishLaunchingWithOptions) method to:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 148

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?)
 -> Bool {

 let tabBarController = window!.rootViewController
 as! UITabBarController

 if let tabBarViewControllers = tabBarController.viewControllers {
 let currentLocationViewController = tabBarViewControllers[0]
 as! CurrentLocationViewController

 currentLocationViewController.managedObjectContext =
 managedObjectContext
 }
 return true
}

In order to get a reference to the CurrentLocationViewController you first have to
find the UITabBarController and then look at its viewControllers array.

Once you have a reference to the CurrentLocationViewController object, you give it
the managedObjectContext. It may not be immediately obvious from looking at the
code, but something special happens at this point…

Remember the code for persistentContainer you added to AppDelegate earlier?
This is what it looked like (I left out most of the actual code):

lazy var persistentContainer: NSPersistentContainer = {
 let container = . . .
 . . .
 return container
}()

These lines declare an instance variable of type NSPersistentContainer. Like a good
Swift variable it has an initial value, because it says:

lazy var persistentContainer: NSPersistentContainer = something

And that something is a block of code in between { } braces:

{
 let container = . . .
 . . .
 return container
}()

You may recognize this as a closure. You’ve already seen those a few times now.
Normally a closure contains source code that is not performed right away, so you
can store it for later use. Here, however, the parentheses at the end of the closure
invoke it immediately.

To make this a bit clearer, here is another example:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 149

var four: Int = { return 2 + 2 }()

The initial value of this variable is the result of the closure { return 2 + 2 }. It’s a
bit silly to do this when you could have just written var four = 4, but in the case of
persistentContainer it is really handy.

What actually happens inside the closure is fairly straightforward:

let container = NSPersistentContainer(name: "DataModel")
container.loadPersistentStores(completionHandler: {
 storeDescription, error in
 if let error = error {
 fatalError("Could load data store: \(error)")
 }
})
return container

You instantiate a new NSPersistentContainer object with the name of the data
model you created earlier, "DataModel". Then you tell it to loadPersistentStores(),
which loads the data from the database into memory and sets up the Core Data
stack.

There is another closure here, given by the completionHandler parameter. The code
in this closure gets invoked when the persistent container is done loading the data.
If something went wrong, you print an error message – useful for debugging! – and
terminate the app using the function fatalError().

Now that you know what it does, you may be wondering why you didn’t just put all
of this code into a regular method and did something like this:

var persistentContainer: NSPersistentContainer

init() {
 persistentContainer = createPersistentContainer()
}

func createPersistentContainer() -> NSPersistentContainer {
 // all the initialization code here
 return container
}

That would certainly be possible, but now the initialization of persistentContainer is
spread over three different parts of the code: the declaration of the variable, the
method that performs all the initialization logic, and the init method to tie it all
together.

Isn’t it nicer to keep all this stuff in one place, rather than chopped up into three
different pieces? Swift lets you perform complex initialization right where you
declare the variable. I think that’s pretty nifty.

There’s another thing going on here:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 150

lazy var persistentContainer: NSPersistentContainer = { . . . }()

Notice the lazy keyword? That means the entire block of code in the { . . . }()
closure isn’t actually performed right away. The context object won’t be created
until you ask for it. This is another example of lazy loading, just like what you did
with DateFormatter.

The managedObjectContext property was also declared lazy:

lazy var managedObjectContext: NSManagedObjectContext =
 self.persistentContainer.viewContext

This is necessary because its initial value comes from persistentContainer. It’s also
necessary to use self here to refer to persistentContainer. Without, Xcode gives a
compiler error.

➤ Run the app. Everything should still be the way it was, but behind the scenes a
new database has been created for Core Data.

A peek inside the data store
As mentioned, Core Data stores the data inside an SQLite database. That file is
named DataModel.sqlite and it lives in the app’s Library folder. That’s similar to
the Documents folder that you’ve seen in the previous tutorial.

You can see it in Finder if you go to ~/Library/Developer/CoreSimulator and
then to the folder that contains the data for the MyLocations app.

➤ The easiest way to find this folder is to add the following to Functions.swift:

let applicationDocumentsDirectory: URL = {
 let paths = FileManager.default.urlsForDirectory(
 .documentDirectory, inDomains: .userDomainMask)
 return paths[0]
}()

This creates a new global constant, applicationDocumentsDirectory, containing the
path to the app’s Documents directory. It’s a global because you’re not putting this
inside a class. This constant will exist for the duration of the app; it never goes out
of scope. You could have made a method for this as you did in the Checklists
tutorial, but using a global constant works just as well.

As before you’re using a closure to provide the code that initializes this constant.
Like all globals, this is evaluated lazily the very first time it is used.

Note: Globals have a bad reputation. Many programmers avoid them at all
costs. The problem with globals is that they create hidden dependencies
between the various parts of your program. And dependencies make the
program hard to change and hard to debug.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 151

But used well, globals can be very handy. It’s feasible that your app will need
to know the path to the Documents directory in several different places.
Putting it in a global constant is a great way to solve that design problem.

➤ Add the following line to application(didFinishLaunchingWithOptions):

print(applicationDocumentsDirectory)

On my computer this prints out:

file:///Users/matthijs/Library/Developer/CoreSimulator/Devices/66422991-
21E3-4394-8DCE-0584865EA854/data/Containers/Data/Application/998845B1-
8E87-40F7-9C3E-FC8DE517227D/Documents/

➤ Open a new Finder window and press Shift+⌘+G. Then copy-paste the path
without the file:// bit to go to the Documents folder.

The database is not actually in the Documents folder, so go back one level and
enter the Library folder, Application Support:

The new database in the app’s Documents directory

The DataModel.sqlite-shm and -wal files are also part of the data store.

This database is still empty because you haven’t stored any objects inside it yet,
but just for the fun of it you’ll take a peek inside.

There are several handy (free!) tools that give you a graphical interface for
interacting with your SQLite databases.

In this section you will use Liya to examine the data store file. Download it from
the Mac App Store or www.cutedgesystems.com/software/liya/.

➤ Start Liya. It asks you for a database connection. Under Database Type choose
SQLite.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 152

Liya opens with this dialog box

➤ On the right of the Database Type field is a small icon. Click this to open a file
picker.

You can navigate to the CoreSimulator/…/Library/Application Support folder,
but that’s a lot of work (it’s a very deeply nested folder).

If you have the Finder window still open, it’s easier to drag the DataModel.sqlite file
from Finder directly into the open file picker. Click Choose when you’re done.

Tip: You can also right-click the DataModel.sqlite file in Finder and choose
Open With → Liya from the popup menu.

The Database URL field should now contain the app’s Document folder and
Database Name should say DataModel.sqlite:

Connecting to the SQLite database

➤ Click Login to proceed.

The screen should look something like this:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 153

The empty DataModel.sqlite database in Liya

The ZLOCATION table is where your Location objects will be stored. It’s currently
empty but on the right you can already see the column names that correspond to
your fields: ZDATE, ZLATITUDE, and so on. Core Data also adds its own columns
and tables (with the Z_ prefix).

You’re not really supposed to change anything in this database by hand, but
sometimes using a visual tool like this is handy to see what’s going on. You’ll come
back to Liya once you’ve inserted new Location objects.

Note: An alternative to Liya is SQLiteStudio, sqlitestudio.pl. You can find more
tools, paid and free, on the Mac App Store by searching for “sqlite”.

There is another handy tool for troubleshooting Core Data. By setting a special flag
on the app, you can see the SQL statements that Core Data uses under the hood to
talk to the data store.

Even if you have no idea of how to speak SQL, this is still valuable information. At
least you can use it to tell whether Core Data is doing something or not. To enable
this tool, you have to edit the project’s scheme.

Schemes are how Xcode lets you configure your projects. A scheme is a bunch of
settings for building and running your app. Standard projects have just one scheme
but you can add additional schemes, which is handy when your project becomes
bigger.

➤ Click on the left part of the MyLocations > iPhone bar at the top of the screen
and choose Edit Scheme... from the menu.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 154

The Edit Scheme... option

The following panel should pop up:

The scheme editor

➤ Choose the Run option on the left-hand side.

➤ Select the Arguments tab.

➤ In the Arguments Passed On Launch section, add the following:

-com.apple.CoreData.SQLDebug 1
-com.apple.CoreData.Logging.stderr 1

Adding the SQLDebug launch argument

➤ Press Close to close this dialog, and run the app.

When it starts, you should see something like this in the debug area:

CoreData: annotation: Connecting to sqlite database file at "/Users/
matthijs/Library/Developer/CoreSimulator/Devices/66422991-21E3-
4394-8DCE-0584865EA854/data/Containers/Data/Application/998845B1-8E87-
40F7-9C3E-FC8DE517227D/Library/Application Support/DataModel.sqlite"

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 155

CoreData: sql: SELECT TBL_NAME FROM SQLITE_MASTER WHERE TBL_NAME =
'Z_METADATA'
CoreData: sql: pragma journal_mode=wal
CoreData: sql: pragma cache_size=200
CoreData: sql: SELECT Z_VERSION, Z_UUID, Z_PLIST FROM Z_METADATA

This is the debug output from Core Data. If you speak SQL, some of this will look
familiar. The specifics don’t matter, but it’s clear that Core Data is connecting to the
data store at this point. Excellent!

Saving the locations
You’ve successfully initialized Core Data and passed the NSManagedObjectContext to
the Tag Location screen. Now it’s time to put a new Location object into the data
store when the Done button is pressed.

➤ Add the following instance variable to LocationDetailsViewController.swift:

var date = Date()

You’re adding this variable because you need to store the current date in the new
Location object. You only want to make that Date object once.

➤ In viewDidLoad(), change the line that sets the dateLabel’s text to:

dateLabel.text = format(date: date)

This now uses the new instance variable.

➤ Change the done() method to the following:

@IBAction func done() {
 let hudView = HudView.hud(inView: navigationController!.view,
 animated: true)
 hudView.text = "Tagged"

 // 1
 let location = Location(context: managedObjectContext)

 // 2
 location.locationDescription = descriptionTextView.text
 location.category = categoryName
 location.latitude = coordinate.latitude
 location.longitude = coordinate.longitude
 location.date = date
 location.placemark = placemark

 // 3
 do {
 try managedObjectContext.save()

 afterDelay(0.6) {
 self.dismiss(animated: true, completion: nil)
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 156

 } catch {
 fatalError("Error: \(error)")
 }
}

This is where you do all the work:

1. First, you create a new Location instance. Because this is a managed object,
you have to use its init(context:) method. You can’t just write Location()
because then the managedObjectContext won’t know about the new object.

2. Once you have created the Location instance, you can use it like any other
object. Here you set its properties to whatever the user entered in the screen.

3. You now have a new Location object whose properties are all filled in, but if you
were to look in the data store at this point you’d still see no objects there. That
won’t happen until you save() the context.

Saving takes any objects that were added to the context, or any managed objects
that had their contents changed, and permanently writes these changes into the
data store. That’s why they call the context the “scratchpad”; its changes aren’t
persisted until you save them.

The save() method can fail for a variety of reasons and therefore you need to catch
that potential error. That’s done using the do-try-catch feature of Swift.

do-try-catch
Sometimes operations from the iOS SDK can fail and return an error of some kind.
You’ve already seen the Error (and NSError) object that is used to describe such
errors. But working with Error can be cumbersome, as it’s really something that is
borrowed from Objective-C.

Swift has a nicer way to deal with errors. It comes down to this: any method that
can potentially fail must have the try keyword in front of it. And that method call
with the try keyword must be inside a do-catch block.

Saving the managed object context is an operation that can potentially fail. That’s
why you wrote it like this:

do {
 try managedObjectContext.save()

 // code that runs when the “try” succeeds . . .
} catch {
 // code that runs when the “try” fails . . .

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 157

}

If something goes wrong and the method fails – or “throws an error” as we say –
the app skips the rest of the do section and immediately jumps to the catch section
to handle the error.

If you’ve programmed in languages that use exceptions this may look familiar, but
there’s a… catch. Any method call that may potentially throw an error must be
written as try methodName(). That makes it easy to spot which method invocations
can throw errors.

You’ll see several more examples of do-try-catch in the rest of this tutorial and the
next one. It’s a very important topic in Swift because nobody likes errors. They
must be caught!

➤ Run the app and tag a location. Enter a description and press the Done button.

If everything went well, Core Data will dump a whole bunch of debug information
into the debug area:

CoreData: sql: BEGIN EXCLUSIVE

. . .

CoreData: sql: INSERT INTO ZLOCATION(Z_PK, Z_ENT, Z_OPT, ZCATEGORY,
ZDATE, ZLATITUDE, ZLOCATIONDESCRIPTION, ZLONGITUDE, ZPLACEMARK) VALUES(?,
?, ?, ?, ?, ?, ?, ?, ?)

CoreData: sql: COMMIT

. . .

CoreData: annotation: sql execution time: 0.0001s

These are the SQL statements that Core Data performs to store the new Location
object in the database.

Note: Again, in Xcode 8.0 the Core Data debug output does not work. Sorry
about that.

➤ In Liya, refresh the contents of the ZLOCATION table (press the Go button).
There should now be one row in that table:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 158

A new row was added to the table

(If you don’t see any rows in the table, press the Stop button in Xcode first to exit
the app. You can also try closing the Liya window and opening a new connection to
the database.)

As you can see, the columns in this table contain the property values from the
Location object. The only column that is not readable is ZPLACEMARK. Its contents
have been encoded as a binary “blob” of data. That is because it’s a Transformable
attribute and the NSCoding protocol has converted its fields into a binary chunk of
data.

If you don’t have Liya or are a command line junkie, then there is another way to
examine the contents of the database. You can use the Terminal app and the
sqlite3 tool, but you’d better know your SQL’s from your ABC’s:

Examining the database from the Terminal

Handling Core Data errors
To save the contents of the context to the data store, you did:

do {
 try managedObjectContext.save()
 . . .
} catch {
 fatalError("Error: \(error)")
}

What if something goes wrong with the save? In that case, the try jumps into the
catch section and you call the fatalError() function. That will immediately kill the
app and return the user to the iPhone’s Springboard. That’s a nasty surprise for the

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 159

user, and therefore not recommended.

The good news is that Core Data only gives an error if you’re trying to save
something that is not valid. In other words, when there is some bug in your app.

Of course, you’ll get all the bugs out during development so users will never
experience any, right? The sad truth is that you’ll never catch all your bugs. Some
always manage to slip through.

The bad news is that there isn’t much else to do but crash when Core Data does
give an error. Something went horribly wrong somewhere and now you’re stuck
with invalid data. If the app were allowed to continue, things would likely only get
worse, as there is no telling what state the app is in. The last thing you want to do
is to corrupt the user’s data.

Instead of making the app crash hard with fatalError(), it will be nice to tell the
user about it first so at least they know what is happening. The crash is still
inevitable, but now your users will know why the app suddenly stopped working.

In this section, you’ll add a popup alert for handling such situations. Again, these
errors should happen only during development, but just in case they do occur to an
actual user, you’ll try to handle it with at least a little bit of grace.

Here’s a way to fake such a fatal error, just to illustrate what happens.

➤ Open the data model (DataModel.xcdatamodeld in the file list), and select the
placemark attribute. In the inspector, uncheck the Optional flag.

Making the placemark attribute non-optional

That means location.placemark may never be nil. This is a constraint that Core
Data will enforce. When you try to save a Location object to the data store whose
placemark property is nil, then Core Data will throw a tantrum. So that’s exactly
what you’re going to do here, just to test your error handling code and to make
sure the app fails gracefully.

➤ Run the app. It is possible that the app crashes right away…

What happened is that you have just changed the data model by making changes
to the placemark attribute. When you launch the app, the NSPersistentContainer
notices this and tries to perform a so-called “migration” of the SQLite database to
the new, updated data model.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 160

The migration may succeed… or not… depending on what is currently in your data
store. If you previously tagged a location that did not have a valid address – i.e.
whose placemark is nil – then the migration to the new data model fails. After all,
the new data model does not allow for placemarks that are nil.

If the app also crashed for you, then the debug area says why:

reason=Cannot migrate store in-place: Validation error missing attribute
values on mandatory destination attribute, . . . {entity=Location,
attribute=placemark, . . .}

The DataModel.sqlite file is out of date with respect to the changed data model, and
Core Data can’t automatically resolve this issue.

There are two ways to fix this: 1) simply throw away the DataModel.sqlite file from
the Library directory; 2) remove the entire app from the Simulator.

➤ Remove the DataModel.sqlite file, as well as the –shm and –wal files, and run the
app again.

This wasn’t actually the crash I wanted to show you, but it’s important to know that
changing the data model may require you to throw away the database file or Core
Data cannot be initialized properly.

Note: Not all is lost if NSPersistentContainer’s migration fails. Core Data
allows you to perform your own migrations when you release an update to
your app with a new data model. Instead of crashing, this mechanism allows
you to convert the contents of the user’s existing data store to the new model.
However, when developing it is just as easy to toss out the old database.

➤ Now here’s the trick. Tap the Get My Location button and then tap immediately
on Tag Location. If you do that quickly enough, you can beat the reverse geocoder
to it and the Tag Location screen will say: “No Address Found”. It only says that
when placemark is nil.

If geocoding happens too fast, you can fake this by temporarily commenting out the
line self.placemark = p.last! in locationManager(didUpdateLocations) inside
CurrentLocationViewController.swift. This will make it seem no address was
found and the value of placemark stays nil.

➤ Tap the Done button to save the new Location object.

The app will crash on the call to fatalError():

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 161

The app crashes after a Core Data error

In the debug area, you can see that it says:

The operation couldn’t be completed . . . NSValidationErrorKey=placemark

This means the placemark attribute did not validate properly. Because you set it to
non-optional, Core Data does not accept a placemark value that is nil.

Of course, what you’ve just seen only happens when you run the app from within
Xcode. When it crashes, the debugger takes over and points at the line with the
error. But that’s not what the user sees.

➤ Stop the app. Now tap the app’s icon in the Simulator to launch the app outside
of Xcode. Repeat the same procedure to make the app crash. The app will simply
cease functioning and disappear from the screen.

Imagine this happening to a user who just paid 99 cents (or more) for your app.
They’ll be horribly confused, “What just happened?!” They may even ask for their
money back.

It’s better to show an alert when this happens. After the user dismisses that alert,
you’ll still make the app crash, but at least the user knows the reason why. (The
alert message should probably ask them to contact you and explain what they did,
so you can fix that bug in the next version of your app.)

➤ Add the following code to Functions.swift:

let MyManagedObjectContextSaveDidFailNotification = Notification.Name(
 rawValue: "MyManagedObjectContextSaveDidFailNotification")

func fatalCoreDataError(_ error: Error) {
 print("*** Fatal error: \(error)")
 NotificationCenter.default.post(
 name: MyManagedObjectContextSaveDidFailNotification, object: nil)

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 162

}

This defines a new global function for handling fatal Core Data errors.

➤ Replace the error handling code in the done() action with:

do {
 try managedObjectContext.save()
 . . .
} catch {
 fatalCoreDataError(error)
}

The call to fatalCoreDataError() has taken the place of fatalError(). So what does
that new function do, actually?

It first outputs the error message to the Debug Area using print() because it’s
always useful to log such errors. After dumping the debug info, the function does
the following:

NotificationCenter.default.post(
 name: MyManagedObjectContextSaveDidFailNotification, object: nil)

I’ve been using the term “notification” to mean any generic event or message being
delivered, but the iOS SDK also has an object called the NotificationCenter (not to
be confused with Notification Center on your phone).

The code above uses NotificationCenter to post a notification. Any object in your
app can subscribe to such notifications and when these occur, NotificationCenter
will call a certain method on those listener objects.

Using this official notification system is yet another way that your objects can
communicate with each other. The handy thing is that the object that sends the
notification and the object that receives the notification don’t need to know
anything about each other. The sender just sends the notification but doesn’t really
care what happens to it. If anyone is listening, great. If not, then that’s cool too.

UIKit defines a lot of standard notifications that you can subscribe to. For example,
there is a notification that lets you know that the app is about to be suspended
when the user taps the Home button.

You can also define your own notifications, and that is what you’ve done here. The
new notification is called MyManagedObjectContextSaveDidFailNotification.

The idea is that there is one place in the app that listens for this notification, pops
up an alert view, and terminates. The great thing about using NotificationCenter is
that your Core Data code does not need to care about any of this.

Whenever a saving error occurs, no matter at which point in the app, the
fatalCoreDataError() function sends out this notification, safe in the belief that
some other object is listening for the notification and will handle the error.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 163

So who will handle the error? The app delegate is a good place for that. It’s the top-
level object in the app and you’re always guaranteed this object exists.

➤ Add the following methods to AppDelegate.swift:

func listenForFatalCoreDataNotifications() {
 // 1
 NotificationCenter.default.addObserver(
 forName: MyManagedObjectContextSaveDidFailNotification,
 object: nil, queue: OperationQueue.main, using: { notification in

 // 2
 let alert = UIAlertController(
 title: "Internal Error",
 message:
 "There was a fatal error in the app and it cannot continue.\n\n"
 + "Press OK to terminate the app. Sorry for the inconvenience.",
 preferredStyle: .alert)

 // 3
 let action = UIAlertAction(title: "OK", style: .default) { _ in
 let exception = NSException(
 name: NSExceptionName.internalInconsistencyException,
 reason: "Fatal Core Data error", userInfo: nil)
 exception.raise()
 }

 alert.addAction(action)

 // 4
 self.viewControllerForShowingAlert().present(alert, animated: true,
 completion: nil)
 })
}

// 5
func viewControllerForShowingAlert() -> UIViewController {
 let rootViewController = self.window!.rootViewController!
 if let presentedViewController =
 rootViewController.presentedViewController {
 return presentedViewController
 } else {
 return rootViewController
 }
}

Here’s how this works step-by-step:

1. Tell NotificationCenter that you want to be notified whenever a
MyManagedObjectContextSaveDidFailNotification is posted. The actual code that
is performed when that happens sits in a closure following using:.

2. Create a UIAlertController to show the error message.

3. Add an action for the alert’s OK button. The code for handling the button press
is again a closure (these things are everywhere!). Instead of calling

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 164

fatalError(), the closure creates an NSException object to terminate the app.
That’s a bit nicer and it provides more information to the crash log.

4. Finally, you present the alert.

5. To show the alert with present(animated, completion) you need a view
controller that is currently visible, so this helper method finds one that is.
Unfortunately you can’t simply use the window’s rootViewController – in this
app that is the tab bar controller – because it will be hidden when the Location
Details screen is open.

All that remains is calling this new listenForFatalCoreDataNotifications() method
so that the notification handler is registered with NotificationCenter.

➤ Add the following to application(didFinishLaunchingWithOptions), just before
the return true statement:

listenForFatalCoreDataNotifications()

➤ Run the app again and try to tag a location before the street address has been
obtained. Now as the app crashes, at least it tells the user what’s going on:

The app crashes with a message

Again, I should stress that you test your app very well to make sure you’re not
giving Core Data any objects that do not validate. You want to avoid these save
errors at all costs!

Ideally, users should never have to see that alert view, but it’s good to have it in
place because there are no guarantees your app won’t have bugs.

Note: You can legitimately use managedObjectContext.save() to let Core Data
validate user input. There is no requirement that you make your app crash
after an unsuccessful save, only if the error was unexpected and definitely
shouldn’t have happened!

Besides the “optional” flag, there are many more validation settings you can
put on the attributes of your entities. If you let the user of your app enter data
that needs to go into these attributes, then it’s perfectly acceptable to use

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 165

save() to perform the validation. If it throws an error, then whatever value the
user entered was invalid somehow and you should handle it.

➤ In the data model, set the placemark attribute back to optional.

Run the app just to make sure everything works as it should.

(If you commented out the line in locationManager(didUpdateLocations) to fake the
error, then put that line back in.)

You can find the project files for the app up to this point under 03 - Core Data in
the tutorial’s Source Code folder.

The Locations tab
You’ve set up the data model and gave the app the ability to save new locations to
the data store. Now you’ll show those locations in a table view in the second tab.

➤ Open the storyboard editor and delete the Second Scene. This is a leftover from
the project template and you don’t need it.

➤ Drag a new Navigation Controller into the canvas. (This has a table view
controller attached to it, which is fine. You’ll use that in a second.)

➤ Ctrl-drag from the Tab Bar Controller to this new Navigation Controller and
select Relationship Segue - view controllers. This adds the navigation controller
to the tab bar.

➤ The Navigation Controller now has a Tab Bar Item that is named “Item”.
Rename it to Locations.

➤ Double-click the navigation bar of the Root View Controller (the one attached to
the new Navigation Controller) and change the title to Locations. (If Xcode gives
you trouble, use the Attributes inspector on the Navigation Item instead.)

➤ In the Identity inspector, change the Class of this table view controller to
LocationsViewController. This class doesn’t exist yet but you’ll make it in a
minute.

The storyboard now looks like this:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 166

The storyboard after adding the Locations screen

➤ Run the app and activate the Locations tab. It doesn’t look very interesting yet:

The Locations screen in the second tab

Before you can show any data in the table, you first have to design the prototype
cell.

➤ Set the prototype cell’s Reuse Identifier to LocationCell.

➤ In the Size inspector, change Row Height to 57.

➤ Drag two Labels into the cell. Give the top one the text Description and the
bottom one the text Address. This is just so you know what they are for.

➤ Set the font of the Description label to System Bold, size 17. Give this label a
tag of 100.

➤ Set the font of the Address label to System, size 14. Set the Text color to black

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 167

with 50% opacity (so its looks like a medium gray). Give it a tag of 101.

The cell will look something like this:

The prototype cell

Make sure that the labels are wide enough to span the entire cell.

Just changing the Row Height of the prototype cell isn’t enough; you also have to
tell the table view about the height of its rows.

➤ Select the table view and go to the Size inspector. Set the Row Height field to
57:

Setting the row height on the table view

Let’s write the code for the view controller. You’ve seen table view controllers
several times now, so this should be easy.

You’re going to fake the content first, because it’s a good idea to make sure that
the prototype cell works before you have to deal with Core Data.

➤ Add a new file to the project and name it LocationsViewController.swift.

Tip: If you want to keep your list of source files neatly sorted by name in the
project navigator, then right-click the MyLocations group (the yellow folder icon)
and choose Sort by Name from the menu.

➤ Change the contents of LocationsViewController.swift to:

import UIKit
import CoreData
import CoreLocation

class LocationsViewController: UITableViewController {
 var managedObjectContext: NSManagedObjectContext!

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 168

 // MARK: - UITableViewDataSource

 override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 1
 }

 override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "LocationCell", for: indexPath)

 let descriptionLabel = cell.viewWithTag(100) as! UILabel
 descriptionLabel.text = "If you can see this"

 let addressLabel = cell.viewWithTag(101) as! UILabel
 addressLabel.text = "Then it works!"

 return cell
 }
}

You’re faking a single row with some placeholder text in the labels. You’re also
already giving this class an NSManagedObjectContext property even though you
won’t be using it yet.

➤ Run the app to make sure the table view works.

The table view with fake data

Note: If the table remains empty, then go back to the storyboard. In the Identity
inspector for the view controller, the Module field is most likely empty or says
“None”. Click the blue arrow to change it to MyLocations.

Swift apps consist of one or more modules. Each target in your project is compiled
into its own module with its own namespace, and Interface Builder needs to know
in which module your view controller class lives. Because you filled in the Class field
before LocationsViewController existed, Xcode got confused. Press ⌘+S to save
the changes and run the app again.

Excellent. Now it’s time to fill up the table with the Location objects from the data
store.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 169

➤ Run the app and tag a handful of locations. If there is no data in the data store,
then the app doesn’t have much to show…

This new part of the app doesn’t know anything yet about the Location objects that
you have added to the data store. In order to display them in the table view, you
need to obtain references to these objects somehow. You can do that by asking the
data store. This is called fetching.

➤ First, add a new instance variable to LocationsViewController.swift:

var locations = [Location]()

This array contains the list of Location objects.

➤ Add the viewDidLoad() method:

override func viewDidLoad() {
 super.viewDidLoad()
 // 1
 let fetchRequest = NSFetchRequest<Location>()
 // 2
 let entity = Location.entity()
 fetchRequest.entity = entity
 // 3
 let sortDescriptor = NSSortDescriptor(key: "date", ascending: true)
 fetchRequest.sortDescriptors = [sortDescriptor]
 do {
 // 4
 locations = try managedObjectContext.fetch(fetchRequest)
 } catch {
 fatalCoreDataError(error)
 }
}

This may look daunting but it’s actually quite simple. You’re going to ask the
managed object context for a list of all Location objects in the data store, sorted by
date.

1. The NSFetchRequest is the object that describes which objects you’re going to
fetch from the data store. To retrieve an object that you previously saved to the
data store, you create a fetch request that describes the search parameters of
the object – or multiple objects – that you’re looking for.

2. Here you tell the fetch request you’re looking for Location entities.

3. The NSSortDescriptor tells the fetch request to sort on the date attribute, in
ascending order. In order words, the Location objects that the user added first
will be at the top of the list. You can sort on any attribute here (later in this
tutorial you’ll sort on the Location’s category as well).

That completes the fetch request. It took a few lines of code, but basically you
said: “Get all Location objects from the data store and sort them by date.”

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 170

4. Now that you have the fetch request, you can tell the context to execute it. The
fetch() method returns an array with the sorted objects, or throws an error in
case something went wrong. That’s why this happens inside a do-try-catch
block.

If everything went well, you assign the results of the fetch to the locations
instance variable.

Note: To create the fetch request you wrote NSFetchRequest<Location>.

The < > mean that NSFetchRequest is a generic. Recall that arrays are also
generics, because to create an array you specify the type of objects that go
into the array, either using the shorthand notation [Location], or the longer
Array<Location>.

To use an NSFetchRequest, you need to tell it what type of objects you’re going
to be fetching. Here, you create an NSFetchRequest<Location> so that the
result of fetch() is an array of Location objects.

Now that you’ve loaded the list of Location objects into an instance variable, you
can change the table view’s data source methods.

➤ Change the data source methods to:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return locations.count
}

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "LocationCell", for: indexPath)

 let location = locations[indexPath.row]

 let descriptionLabel = cell.viewWithTag(100) as! UILabel
 descriptionLabel.text = location.locationDescription

 let addressLabel = cell.viewWithTag(101) as! UILabel
 if let placemark = location.placemark {
 var text = ""
 if let s = placemark.subThoroughfare {
 text += s + " "
 }
 if let s = placemark.thoroughfare {
 text += s + ", "
 }
 if let s = placemark.locality {
 text += s
 }
 addressLabel.text = text
 } else {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 171

 addressLabel.text = ""
 }
 return cell
}

This should have no surprises for you. You get the Location object for the row from
the array and then use its properties to fill up the labels. Because placemark is an
optional, you use if let to unwrap it.

➤ Run the app. Now switch to the Locations tab and… crap! It crashes.

The text in the debug area says something like:

fatal error: unexpectedly found nil while unwrapping an Optional value

Exercise. What did you forget?

Answer: You added a managedObjectContext property to LocationsViewController,
but never gave this property a value. Therefore, there is nothing to fetch Location
objects from.

➤ Switch to AppDelegate.swift. In application(didFinishLaunchingWithOptions),
inside the if let tabBarViewControllers block, add the following:

let navigationController = tabBarViewControllers[1]
 as! UINavigationController
let locationsViewController = navigationController.viewControllers[0]
 as! LocationsViewController
locationsViewController.managedObjectContext = managedObjectContext

This looks up the LocationsViewController in the storyboard and gives it a
reference to the managed object context.

➤ Run the app again and switch to the Locations tab. Core Data properly fetches
the objects and shows them on the screen:

The list of Locations

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 172

Note that the list doesn’t update yet if you tag a new location. You have to restart
the app to see the new Location object appear. You’ll solve this later in the tutorial.

Creating a custom Table View Cell subclass
Using cell.viewWithTag(xxx) to find the labels from the table view cell works, but it
doesn’t look very object-oriented to me.

It would be much nicer if you could make your own UITableViewCell subclass and
give it outlets for the labels. Fortunately, you can and it’s pretty easy!

➤ Add a new file to the project using the Cocoa Touch Class template. Name it
LocationCell and make it a subclass of UITableViewCell.

➤ Add the following outlets to LocationCell.swift, inside the class definition:

@IBOutlet weak var descriptionLabel: UILabel!
@IBOutlet weak var addressLabel: UILabel!

➤ Open the storyboard and select the prototype cell that you made earlier. In the
Identity inspector, set Class to LocationCell.

➤ Now you can connect the two labels to the two outlets. This time the outlets are
not on the view controller but on the cell, so use the LocationCell’s Connections
inspector to connect the descriptionLabel and addressLabel outlets.

That is all you need to do to make the table view use your own table view cell class.
You do need to update LocationsViewController to make use of it.

➤ In LocationsViewController.swift, replace tableView(cellForRowAt) with the
following:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "LocationCell", for: indexPath) as! LocationCell

 let location = locations[indexPath.row]
 cell.configure(for: location)

 return cell
}

As before, this asks for a cell using dequeueReusableCell(withIdentifier, for), but
now this will always be a LocationCell object instead of a regular UITableViewCell.
That’s why you’ve added the type cast.

Note that "LocationCell" is the re-use identifier from the placeholder cell, but
LocationCell is the class of the actual cell object that you’re getting. They have the
same name but one is a String and the other is a UITableViewCell subclass with
extra properties. I hope that’s not too confusing.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 173

Once you have the cell reference, you call a new method, configure(for) to put the
Location object into the table view cell.

➤ Add this new method to LocationCell.swift:

func configure(for location: Location) {
 if location.locationDescription.isEmpty {
 descriptionLabel.text = "(No Description)"
 } else {
 descriptionLabel.text = location.locationDescription
 }

 if let placemark = location.placemark {
 var text = ""
 if let s = placemark.subThoroughfare {
 text += s + " "
 }
 if let s = placemark.thoroughfare {
 text += s + ", "
 }
 if let s = placemark.locality {
 text += s
 }
 addressLabel.text = text
 } else {
 addressLabel.text = String(format:
 "Lat: %.8f, Long: %.8f", location.latitude, location.longitude)
 }
}

Instead of using viewWithTag() to find the description and address labels, you now
simply use the descriptionLabel and addressLabel properties of the cell.

➤ Run the app to make sure everything still works. If you have a location without a
description the table cell will now say “(No Description)”. If there is no placemark,
the address label contains the GPS coordinates.

Using a custom subclass for your table view cells, there is no limit to how complex
you can make them.

Editing the locations
You will now connect the LocationsViewController to the Location Details screen, so
that when you tap a row in the table, it lets you edit that location’s description and
category.

You’ll be re-using the LocationDetailsViewController but have it edit an existing
Location object rather than add a new one.

➤ Go to the storyboard. Select the prototype cell (the one with the “Description”
and “Address” labels) and Ctrl-drag to the Navigation Controller that is connected
to the Location Details screen. Add a Present Modally selection segue and name it
EditLocation.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 174

After a bit of tidying up, the storyboard looks like this:

The Location Details screen is now also connected to the Locations screen

There are now two segues from two different screens going to the same view
controller.

This is the reason why you should build your view controllers to be as independent
of their “calling” controllers as possible, so you can easily re-use them somewhere
else in your app.

Soon you will be calling this same screen from yet another place. In total there will
be three segues to it.

➤ Go to LocationsViewController.swift and add the prepare-for-segue method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "EditLocation" {
 let navigationController = segue.destination
 as! UINavigationController
 let controller = navigationController.topViewController
 as! LocationDetailsViewController
 controller.managedObjectContext = managedObjectContext

 if let indexPath = tableView.indexPath(
 for: sender as! UITableViewCell) {
 let location = locations[indexPath.row]
 controller.locationToEdit = location
 }
 }
}

This method is invoked when the user taps a row in the Locations screen. It figures
out which Location object belongs to the row and puts it in the new locationToEdit
property of LocationDetailsViewController. This property doesn’t exist yet but

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 175

you’ll add it in a moment.

The Any type
The type of the sender parameter is Any. You have seen this type in a few places
before. What is it?

Objective-C has a special type, id, that means “any object”. It’s similar to NSObject
except that it doesn’t make any assumptions at all about what kind of object it is.
id doesn’t have any methods, properties or instance variables, it’s a completely
naked object reference.

All objects in an Objective-C program can be treated as having type id. As a result,
a lot of the APIs from the iOS frameworks depend on this special id type. This is a
powerful feature of Objective-C but unfortunately a dynamic type like id doesn’t
really fit in a strongly typed language such as Swift.

Still, we can’t avoid id completely because it’s so prevalent in the iOS frameworks.
The Swift equivalent of id is the type Any.

The sender parameter from prepare(for:sender:) can be any kind of object and
therefore has type Any (thanks to the question mark it can also be nil).

If the segue is triggered from a table view, sender has type UITableViewCell. If
triggered from a button, sender has type UIBarButtonItem, and so on.

Objects that appear as type Any are not very useful in that form, and you’ll have to
tell Swift what sort of object it really is. In the code that you just wrote,
indexPath(for) expects a UITableViewCell object, not an Any object.

You and I both know that sender in this case really is a UITableViewCell because
the only way to trigger this segue is to tap a table view cell. With the as! type cast
you’re giving Swift your word (Scout’s honor!) that it can safely interpret sender as
a UITableViewCell.

(Of course, if you were to hook up this segue to something else, such as a button,
then this assumption is no longer valid and the app will crash.)

When editing an existing Location object, you have to do a few things differently in
the LocationDetailsViewController. The title of the screen shouldn’t be “Tag

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 176

Location” but “Edit Location”. You also must put the values from the existing
Location object into the various cells.

The value of the new locationToEdit property determines whether the screen
operates in “adding” mode or in “editing” mode.

➤ Add these properties to LocationDetailsViewController.swift:

var locationToEdit: Location?
var descriptionText = ""

locationToEdit needs to be an optional because in “adding” mode it will be nil.
That’s how the LocationDetailsViewController tells the difference.

➤ Expand viewDidLoad() to check whether locationToEdit is set:

override func viewDidLoad() {
 super.viewDidLoad()

 if let location = locationToEdit {
 title = "Edit Location"
 }
 . . .
}

If locationToEdit is not nil, you’re editing an existing Location object. In that
case, the title of the screen becomes “Edit Location”.

Note: Xcode gives a warning on the line if let location = locationToEdit
because you’re not using the value of location anywhere. If you click the
yellow icon, Xcode suggests that you replace it with if locationToEdit != nil.
In a little while you will use location, so ignore Xcode’s suggestion.

➤ Also change this line in viewDidLoad():

descriptionTextView.text = descriptionText

You’re loading the value of the new descriptionText variable into the text view.

Now how do you get the values from that Location object into the text view and
labels of this view controller? Swift has a really cool property observer feature
that is perfect for this.

➤ Change the declaration of the locationToEdit property to the following:

var locationToEdit: Location? {
 didSet {
 if let location = locationToEdit {
 descriptionText = location.locationDescription
 categoryName = location.category
 date = location.date

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 177

 coordinate = CLLocationCoordinate2DMake(
 location.latitude, location.longitude)
 placemark = location.placemark
 }
 }
}

If a variable has a didSet block, then the code in this block is performed whenever
you put a new value into the variable. Very handy!

Here you take the opportunity to fill in the view controller’s instance variables with
the Location object’s values.

Because prepare(for:sender) – and therefore locationToEdit’s didSet – is called
before viewDidLoad(), this puts the right values on the screen when it becomes
visible.

➤ Run the app, go to the Locations tab and tap on a row. The Edit Location screen
should now appear with the data from the selected location:

Editing an existing location

➤ Change the description of the location and press Done.

Nothing happened?! Well, that’s not quite true. Stop the app and run it again. You
will see that a new location has been added with the changed description, but the
old one is still there as well.

There are two problems to solve:

1. when editing an existing location you must not insert a new one,

2. the screen doesn’t update to reflect any changes in the data model.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 178

The first fix is easy.

➤ Still in LocationDetailsViewController.swift, change the top part of done():

@IBAction func done() {
 let hudView = HudView.hud(inView: . . .)

 let location: Location
 if let temp = locationToEdit {
 hudView.text = "Updated"
 location = temp
 } else {
 hudView.text = "Tagged"
 location = Location(context: managedObjectContext)
 }

 location.locationDescription = descriptionTextView.text
 . . .

The change is straightforward: you only ask Core Data for a new Location object if
you don’t already have one. You also make the text in the HUD say “Updated” when
the user is editing an existing Location.

Note: I’ve been harping on about the fact that Swift requires all non-optional
variables and constants to always have a value. But here you declare let
location without giving it an initial value. What gives?

Well, the if-statement that follows this declaration always puts a value into
location, either the unwrapped value of locationToEdit, or a new Location
object obtained from Core Data. After the if-statement, location is guaranteed
to have a value. Swift is cool with that.

➤ Run the app again and edit a location. Now the HUD should say “Updated”.

➤ Stop the app and run it again to verify that the object was indeed properly
changed. (You can also look at it directly in the SQLite database, of course.)

Exercise. Why do you think the table view isn’t being updated after you change a
Location object? Tip: Recall that the table view also doesn’t update when you tag
new locations.

Answer: You fetch the Location objects in viewDidLoad(). But viewDidLoad() is only
performed once, when the app starts. After the initial load of the Locations screen,
its contents are never refreshed.

In the Checklists app, you solved this by using a delegate and that would be a valid
solution here too. The LocationDetailsViewController could tell you through
delegate methods that a location has been added or changed. But since you’re
using Core Data, there is a better way to do this, and that’s the topic of the next
section.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 179

Using NSFetchedResultsController
As you are no doubt aware by now, table views are everywhere in iOS apps. A lot of
the time when you’re working with Core Data, you want to fetch objects from the
data store and show them in a table view. And when those objects change, you
want to live update the table view in response to show the changes to the user.

So far you’ve filled up the table view by manually fetching the results, but then you
also need to manually check for changes and perform the fetch again to update the
table. Thanks to NSFetchedResultsController, that suddenly becomes a lot easier.

It works like this: you give NSFetchedResultsController a fetch request, just like
the NSFetchRequest you’ve made earlier, and tell it to go fetch the objects. So far
nothing new.

But you don’t put the results from that fetch into your own array. Instead, you read
them straight from the fetched results controller. In addition, you make the view
controller the delegate for the NSFetchedResultsController. Through this delegate
the view controller is informed that objects have been changed, added or deleted.
In response it should update the table.

➤ In LocationsViewController.swift, replace the locations instance variable with
the new fetchedResultsController variable:

lazy var fetchedResultsController:
 NSFetchedResultsController<Location> = {
 let fetchRequest = NSFetchRequest<Location>()

 let entity = Location.entity()
 fetchRequest.entity = entity

 let sortDescriptor = NSSortDescriptor(key: "date", ascending: true)
 fetchRequest.sortDescriptors = [sortDescriptor]

 fetchRequest.fetchBatchSize = 20

 let fetchedResultsController = NSFetchedResultsController(
 fetchRequest: fetchRequest,
 managedObjectContext: self.managedObjectContext,
 sectionNameKeyPath: nil,
 cacheName: "Locations")

 fetchedResultsController.delegate = self
 return fetchedResultsController
}()

This again uses the lazy initialization pattern with a closure that sets everything up.
It’s good to get into the habit of lazily loading objects. You don’t allocate them until
you first use them. This makes your apps quicker to start and it saves memory.

The code in the closure does the same thing that you used to do in viewDidLoad():
it makes an NSFetchRequest and gives it an entity and a sort descriptor.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 180

Note: One small difference is that you need to use self here to access the
managedObjectContext variable. You’re inside a closure, after all.

Also note that the new variable is not just NSFetchedResultsController but
NSFetchedResultsController<Location>, since it’s a generic. You need to tell
the fetched results controller what type of objects to fetch.

This is new:

fetchRequest.fetchBatchSize = 20

If you have a huge table with hundreds of objects then it requires a lot of memory
to keep all of these objects around, even though you can only see a handful of
them at a time.

The NSFetchedResultsController is pretty smart about this and will only fetch the
objects that you can actually see, which cuts down on memory usage. This is all
done in the background without you having to worry about it. The fetch batch size
setting allows you to tweak how many objects will be fetched at a time.

Once the fetch request is set up, you can create the star of the show:

let fetchedResultsController = NSFetchedResultsController(
 fetchRequest: fetchRequest,
 managedObjectContext: self.managedObjectContext,
 sectionNameKeyPath: nil,
 cacheName: "Locations")

The cacheName needs to be a unique name that NSFetchedResultsController uses to
cache the search results. It keeps this cache around even after your app quits, so
the next time the fetch request is lightning fast, as the NSFetchedResultsController
doesn’t have to make a round-trip to the database but can simply read from the
cache.

We’ll talk about the sectionNameKeyPath parameter shortly.

The line that sets fetchedResultsController.delegate to self currently gives an
error message because LocationsViewController does not conform to the right
delegate protocol yet. You’ll fix that in minute.

Now that you have a fetched results controller, you can simplify viewDidLoad().

➤ Change viewDidLoad() to:

override func viewDidLoad() {
 super.viewDidLoad()
 performFetch()
}

func performFetch() {
 do {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 181

 try fetchedResultsController.performFetch()
 } catch {
 fatalCoreDataError(error)
 }
}

You still perform the initial fetch in viewDidLoad(), using the new performFetch()
helper method. However, if any Location objects change after that initial fetch, the
NSFetchedResultsController’s delegate methods are called to let you know about
these changes. I’ll show you in a second how that works.

It’s always a good idea to explicitly set the delegate to nil when you no longer
need the NSFetchedResultsController, just so you don’t get any more notifications
that were still pending.

➤ For that reason, add a deinit method:

deinit {
 fetchedResultsController.delegate = nil
}

The deinit method is invoked when this view controller is destroyed. It may not
strictly be necessary to nil out the delegate here, but it’s a bit of defensive
programming that won’t hurt. (Note that in this app the LocationsViewController
will never actually be deallocated because it’s one of the top-level view controllers
in the tab bar. Still, it’s good to get into the habit of writing deinit methods.)

Because you removed the locations array, you should also change the table’s data
source methods.

➤ Change tableView(numberOfRowsInSection) to:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 let sectionInfo = fetchedResultsController.sections![section]
 return sectionInfo.numberOfObjects
}

The fetched results controller’s sections property returns an array of
NSFetchedResultsSectionInfo objects that describe each section of the table view.
The number of rows is found in the section info’s numberOfObjects property.

(Currently there is only one section but in a little while you’ll split up the locations
by category and then each category gets its own section.)

➤ Change tableView(cellForRowAt) to:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "LocationCell", for: indexPath) as! LocationCell

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 182

 let location = fetchedResultsController.object(at: indexPath)
 cell.configure(for: location)

 return cell
}

Instead of looking into the locations array like you did before, you now ask the
fetchedResultsController for the object at the requested index-path. Because it is
designed to work closely together with table views, NSFetchedResultsController
knows how to deal with index-paths, so that’s very convenient.

➤ Make the same change in prepare(for:sender:).

There is still one piece of the puzzle missing. You need to implement the delegate
methods for NSFetchedResultsController in LocationsViewController. Let’s use an
extension for that, to keep these methods organized.

An extension lets you add code to an existing class, without having to modify that
class in the source code. When you make an extension you say, “here are a bunch
of extra methods that also need to go into that class”, and you can do that even if
you didn’t write the original class to begin with.

You’ve seen an extension used in Location+CoreDataProperties.swift. That was
done to make it easier for Xcode to regenerate this file without overwriting the
contents of Location+CoreDataClass.swift.

You can also use extensions to organize your source code. Here you’ll use an
extension just for the NSFetchedResultsControllerDelegate methods, so they are
not all tangled up with LocationsViewController’s other code. By putting it in its
own thing, it keeps the responsibilities separate.

This makes it easy to spot which part of LocationsViewController plays the role of
the delegate. All the fetched results controller delegate stuff happens just in this
extension, not in the main body of the class. (You could even place this extension in
a separate Swift file if you wanted.)

➤ Add the following code to the bottom of the source file, outside of the class:

extension LocationsViewController: NSFetchedResultsControllerDelegate {

 func controllerWillChangeContent(_ controller:
 NSFetchedResultsController<NSFetchRequestResult>) {
 print("*** controllerWillChangeContent")
 tableView.beginUpdates()
 }

 func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChange anObject: Any, at indexPath: IndexPath?,
 for type: NSFetchedResultsChangeType, newIndexPath: IndexPath?) {

 switch type {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 183

 case .insert:
 print("*** NSFetchedResultsChangeInsert (object)")
 tableView.insertRows(at: [newIndexPath!], with: .fade)

 case .delete:
 print("*** NSFetchedResultsChangeDelete (object)")
 tableView.deleteRows(at: [indexPath!], with: .fade)

 case .update:
 print("*** NSFetchedResultsChangeUpdate (object)")
 if let cell = tableView.cellForRow(at: indexPath!)
 as? LocationCell {
 let location = controller.object(at: indexPath!) as! Location
 cell.configure(for: location)
 }

 case .move:
 print("*** NSFetchedResultsChangeMove (object)")
 tableView.deleteRows(at: [indexPath!], with: .fade)
 tableView.insertRows(at: [newIndexPath!], with: .fade)
 }
 }

 func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChange sectionInfo: NSFetchedResultsSectionInfo,
 atSectionIndex sectionIndex: Int,
 for type: NSFetchedResultsChangeType) {
 switch type {
 case .insert:
 print("*** NSFetchedResultsChangeInsert (section)")
 tableView.insertSections(IndexSet(integer: sectionIndex),
 with: .fade)
 case .delete:
 print("*** NSFetchedResultsChangeDelete (section)")
 tableView.deleteSections(IndexSet(integer: sectionIndex),
 with: .fade)
 case .update:
 print("*** NSFetchedResultsChangeUpdate (section)")
 case .move:
 print("*** NSFetchedResultsChangeMove (section)")
 }
 }

 func controllerDidChangeContent(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>) {
 print("*** controllerDidChangeContent")
 tableView.endUpdates()
 }
}

Yowza, that’s a lot of code. Don’t let this freak you out! This is the standard way of
implementing these delegate methods. For many apps, this exact code will suffice
and you can simply copy it over. Look it over for a few minutes to see if this code
makes sense to you. You’ve made it this far, so I’m sure it won’t be too hard.

NSFetchedResultsController will invoke these methods to let you know that certain

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 184

objects were inserted, removed, or just updated. In response, you call the
corresponding methods on the UITableView to insert, remove or update rows. That’s
all there is to it.

I put print() statements in these methods so you can follow along in the debug
area with what is happening. Also note that you’re using the switch statement here.
A series of if’s would have worked just as well but switch reads better.

➤ Run the app. Edit an existing location and press the Done button.

The debug area now shows:

*** controllerWillChangeContent
*** NSFetchedResultsChangeUpdate (object)
*** controllerDidChangeContent

NSFetchedResultsController noticed that an existing object was updated and,
through updating the table, called your cell.configure(for) method to redraw the
contents of the cell. By the time the Edit Location screen has disappeared from
sight, the table view is updated and your change will be visible.

This also works for adding new locations.

➤ Tag a new location and press the Done button.

The debug area says:

*** controllerWillChangeContent
*** NSFetchedResultsChangeInsert (object)
*** controllerDidChangeContent

This time it’s an “insert” notification. The delegate methods told the table view to
do insertRows(at:with:) in response and the new Location object is inserted in the
table.

That’s how easy it is. You make a new NSFetchedResultsController object with a
fetch request and implement the delegate methods.

The fetched results controller keeps an eye on any changes that you make to the
data store and notifies its delegate in response.

It doesn’t matter where in the app you make these changes, they can happen on
any screen. When that screen saves the changes to the managed object context,
the fetched results controller picks up on them right away.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 185

“It’s not a bug, it’s an undocumented feature”
There is a nasty bug with Core Data that still appears to be present in iOS 10. Here
is how you can reproduce it:

1. Quit the app.

2. Run the app again and tag a new location.

3. Switch to the Locations tab.

You’d expect the new location to appear in the Locations tab, but it doesn’t.

It’s even possible that the app crashes as soon as you switch tabs. The error
message is:

CoreData: FATAL ERROR: The persistent cache of section information does
not match the current configuration. You have illegally mutated the
NSFetchedResultsController's fetch request, its predicate, or its sort
descriptor without either disabling caching or using
+deleteCacheWithName:

We did no such thing! Interestingly, this problem does not occur when you switch to
the Locations tab before you tag the new location.

There are two possible fixes:

1 - You can delete the cache of the NSFetchedResultsController. To do this, add the
following line to viewDidLoad() before the call to performFetch():

NSFetchedResultsController<Location>.deleteCache(withName: "Locations")

This is not a great solution because it negates the point of having a cache in the
first place.

2 - You can force the LocationsViewController to load its view immediately when
the app starts up. Without this, it delays loading the view until you switch tabs,
causing Core Data to get confused. To apply this fix, add the following to
application(didFinishLaunchingWithOptions), immediately below the line that sets
locationsViewController.managedObjectContext:

let _ = locationsViewController.view

If this problem also affects you, then implement one of the above solutions (my
suggestion is #2). Then throw away DataModel.sqlite and run the app again. Verify
that the bug no longer occurs.

iOS is pretty great but unfortunately it’s not free of bugs (what software is?). If you
encounter what you perceive to be a bug in one of the iOS frameworks, then report
it at bugreport.apple.com. Feel free to report this Core Data bug as practice. :-)

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 186

Speaking of nasty bugs, iOS 10.0 introduces one that’s a doozy. Parts of Core Data
were rewritten for Swift 3.0 and I’m afraid some new bugs slipped into the code.

Here’s how to reproduce this error:

1. Tag two new locations and give them both the same category.

2. Go to the Locations tab.

3. Tap the first of these new locations and change its category to something else.

You will now get an error like the following:

Serious application error . . . Invalid update: invalid number of rows
in section . . .

This error message comes from UITableView. It expected the app to move a row
from one section into another section, but according to the error message that
didn’t happen. If you trace back through what did happen, you’ll find that the
NSFetchedResultsController sent a NSFetchedResultsChangeUpdate notification to
the delegate (the view controller) instead of a NSFetchedResultsChangeMove.

Because NSFetchedResultsController sends the wrong message, the app gets
confused and crashes. Yikes! This bug is pretty serious. Until this is fixed, I cannot
recommend you use NSFetchedResultsController in your own apps if you’re using
multiple sections.

Deleting Locations
Everyone makes mistakes so it’s likely that users will want to delete locations from
their list at some point. This is a very easy feature to add: you just have to remove
the Location object from the data store and the NSFetchedResultsController will
make sure it gets dropped from the table (again, through its delegate methods).

➤ Add the following method to LocationsViewController.swift:

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {
 if editingStyle == .delete {
 let location = fetchedResultsController.object(at: indexPath)
 managedObjectContext.delete(location)

 do {
 try managedObjectContext.save()
 } catch {
 fatalCoreDataError(error)

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 187

 }
 }
}

You’ve seen tableView(commit, forRowAt) before. It’s part of the table view’s data
source protocol. As soon as you implement this method in your view controller, it
enables swipe-to-delete.

This method gets the Location object from the selected row and then tells the
context to delete that object. This will trigger the NSFetchedResultsController to
send a notification to the delegate (NSFetchedResultsChangeDelete), which then
removes the corresponding row from the table. That’s all you need to do!

➤ Run the app and remove a location using swipe-to-delete. The Location object is
dropped from the database and its row disappears from the screen with a brief
animation.

Swipe to delete rows from the table

Many apps have an Edit button in the navigation bar that triggers a mode that also
lets you delete (and sometimes move) rows. This is extremely easy to add.

➤ Add the following line to viewDidLoad():

navigationItem.rightBarButtonItem = editButtonItem

That’s all there is to it. Every view controller has a built-in Edit button that can be
accessed through the editButtonItem property. Tapping that button puts the table in
editing mode:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 188

The table view in edit mode

➤ Run the app and verify that you can now also delete rows by pressing the Edit
button.

Pretty sweet, huh. There’s more cool stuff that NSFetchedResultsController makes
really easy, such as splitting up the rows into sections.

Table view sections
The Location objects have a category field. It would be nice to group the locations
by category in the table. The table view supports organizing rows into sections and
each of those sections can have its own header.

Putting your rows into sections is a lot of work if you’re doing it by hand, but
NSFetchedResultsController practically gives you section support for free.

➤ Change the creation of the sort descriptors in the fetchedResultsController
initialization block:

lazy var fetchedResultsController: NSFetchedResultsController<...> = {
 . . .
 let sortDescriptor1 = NSSortDescriptor(key: "category",
 ascending: true)
 let sortDescriptor2 = NSSortDescriptor(key: "date", ascending: true)
 fetchRequest.sortDescriptors = [sortDescriptor1, sortDescriptor2]
 . . .

Instead of one sort descriptor object, you now have two. First this sorts the
Location objects by category and inside each of these groups it sorts by date.

➤ Also change the initialization of the NSFetchedResultsController object:

 let fetchedResultsController = NSFetchedResultsController(
 fetchRequest: fetchRequest,
 managedObjectContext: self.managedObjectContext,
 sectionNameKeyPath: "category", // change this
 cacheName: "Locations")

The only difference here is that the sectionNameKeyPath parameter changed to
"category", which means the fetched results controller will group the search results

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 189

based on the value of the category attribute.

You’re not done yet. The table view’s data source also has methods for sections. So
far you’ve only used the methods for rows, but now that you’re adding sections to
the table you need to implement a few additional methods.

➤ Add the following methods to the data source:

override func numberOfSections(in tableView: UITableView) -> Int {
 return fetchedResultsController.sections!.count
}

override func tableView(_ tableView: UITableView,
 titleForHeaderInSection section: Int) -> String? {
 let sectionInfo = fetchedResultsController.sections![section]
 return sectionInfo.name
}

Because you let NSFetchedResultsController do all the work already, the
implementation of these methods is very simple. You ask the fetcher object for a
list of the sections, which is an array of NSFetchedResultsSectionInfo objects, and
then look inside that array to find out how many sections there are and what their
names are.

Exercise. Why do you need to write sections! with an exclamation point?

Answer: the sections property is an optional, so it needs to be unwrapped before
you can use it. Here you know for sure that sections will never be nil – after all,
you just told NSFetchedResultsController to group the search results based on the
value of their “category” field – so you can safely force unwrap it using the
exclamation mark. Are you starting to get the hang of these optionals already?

➤ Run the app. Play with the categories on the locations and notice how the table
view automatically updates. All thanks to NSFetchedResultsController!

The locations are now grouped in sections

You can find the project files for this section under 04 – Locations Tab in the

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 190

tutorial’s Source Code folder.

Hierarchies
Programmers love to organize stuff into hierarchies – or tree structures as they
like to call them.

You have to admit that the following pictures do look at bit like trees. The thing at
the bottom is often called the root, all the other items are branches. Keeping with
the tree analogy, the items at the very ends are known as the leaves.

There is the inheritance hierarchy of view controller classes:

UIViewController inheritance tree (partial)

There is also an inheritance hierarchy of view classes:

UIView and some of its subclasses

Often your data model classes will also have superclasses and subclasses:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 191

Data model class hierarchy for a grocery store

The arrows in these diagrams all represent is-a relationships between the classes.

A UITableViewController is a UIViewController, but with extra stuff. Likewise, a
UIButton is a UIView that also knows how to respond to touches and can initiate
actions when tapped.

Often people use the terms parent and child when they talk about such
hierarchies. UIViewController is the parent of UITableViewController, while
UIButton is a child of UIControl, which is the child of UIView.

The above hierarchies are between data types. The object graph, on the other
hand, is a hierarchy between actual object instances.

The type hierarchy is used only during the construction of your programs and is
fixed, but the object graph can change dynamically while your app is running as
new relationships are forged and old ones are broken.

The flow of screens in the MyLocations app can be expressed as a sort of hierarchy
between view controllers, with the UITabBarController as the root at the bottom:

The flow between the screens in the app is also a hierarchy

This is essentially what your storyboard represents. Here the terms parent and child

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 192

are used also: the UITabBarController is the parent of the view controllers for the
Tag, Locations and Map screens (which you’ll be adding next).

Views on the screen also have a hierarchy of subviews. The view controller’s main
view provides the backdrop for the screen, and it has many view objects layered on
top of it:

The view and subview objects in a screen with a table view

The graph of data model objects can also form a hierarchy:

The object graph of data model objects

These are all known as has-a relationships. The Array instance has one or more
Location objects (its children). Each Location object has latitude, longitude,
category, and placemark objects. And the CLPlacemark instance has a bunch of
string objects of its own.

The world of computing is rife with examples of hierarchies and tree structures. For
example, the contents of a plist or XML file, the organization of your source files
into groups in the Xcode project, the computer’s file system with its infinitely
nested directories, get-rich-quick Ponzi schemes, you name it.

Pins on a map
Showing the locations in a table view is useful but not very visually appealing. The

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 193

iOS SDK comes with an awesome map view control and it would be a shame not to
use it.

In this section you will add a third tab to the app that looks like this:

The Map screen with some locations in my hometown

First visit: the storyboard.

➤ From the Objects Library, drag a regular View Controller into the canvas (put it
below the others).

➤ Ctrl-drag from the Tab Bar Controller to this new View Controller to add it to the
tabs (choose Relationship segue – view controllers).

➤ The new view controller now has a Tab Bar Item. Rename it to say Map.

➤ Drag a Map Kit View into the view controller. Make it cover the entire area of
the screen, so that it sits partially below the tab bar. (The size of the Map View
should be 320 × 568 points.)

➤ In the Size inspector, change the autoresizing settings for the Map View to:

The autoresizing settings for the Map View

➤ In the Attributes inspector for the Map View, enable Shows: User Location.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 194

That will put a blue dot on the map at the user’s current coordinates.

➤ Drag a Navigation Bar into the Map View Controller. Place it at Y = 20, against
the bottom of the status bar. Change its title to Map. The navigation bar should
also partially overlap the Map View.

➤ Drag a Bar Button Item into the left-hand slot of the navigation bar and give it
the title Locations. Drag another into the right-hand slot but name it User. Later
on you’ll use nice icons for these buttons but for now these labels will do.

This part of the storyboard should look like this:

The design of the Map screen

Note: For some reason the Map Kit View appears as a white rectangle on
macOS Sierra. The above screenshot is from OS X El Capitan where the Map
Kit View is blue and a lot easier to see.

The app won’t run as-is. The app will compile without problems but crashes when
you switch to the Map screen. MKMapView is not part of UIKit but of MapKit, so you
need to add the MapKit framework first.

For some reason adding import MapKit to the source of the app is not sufficient to
solve this problem. An extra step is required.

➤ Go to the Project Settings screen and select the Capabilities tab. Scroll down
to where it says Maps and toggle the switch to ON.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 195

Enabling the app to use maps

➤ Run the app. Choose a location in the Simulator’s Debug menu and switch to the
Map. The screen should look something like this – the blue dot shows the current
location:

The map shows the user’s location

You can pan the map by clicking the mouse and dragging it across the Simulator
window. To zoom in or out, hold down the Alt/Option key while dragging the mouse.

Note: There is a gap between the top of the screen and the navigation bar.
That happens because the status bar is not a separate area but is directly
drawn on top of the view controller. You will fix this later in the tutorial.

Next, you’re going to show the user’s location in a little more detail because that
blue dot could be almost anywhere in California!

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 196

➤ Add a new source file to the project and name it MapViewController.

➤ Replace the contents of MapViewController.swift with the following:

import UIKit
import MapKit
import CoreData

class MapViewController: UIViewController {
 @IBOutlet weak var mapView: MKMapView!

 var managedObjectContext: NSManagedObjectContext!

 @IBAction func showUser() {
 let region = MKCoordinateRegionMakeWithDistance(
 mapView.userLocation.coordinate, 1000, 1000)
 mapView.setRegion(mapView.regionThatFits(region), animated: true)
 }

 @IBAction func showLocations() {
 }
}

extension MapViewController: MKMapViewDelegate {
}

This is a regular view controller, not a table view controller. It has an outlet for the
map view and two action methods that will be connected to the buttons in the
navigation bar. The view controller is also the delegate of the map view, courtesy of
the extension.

➤ In the storyboard, select the view controller and in the Identity inspector set
its Class to MapViewController.

➤ Connect the Locations bar button item to the showLocations action and the User
button to the showUser action. (In case you forgot how, Ctrl-drag from the bar
button items to the view controller.)

➤ Connect the Map View with the mapView outlet (Ctrl-drag from the view controller
to the Map View), and its delegate with the view controller (Ctrl-drag the other way
around).

Currently the view controller only implements the showUser() action method. When
you press the User button, it zooms in the map to a region that is 1000 by 1000
meters (a little more than half a mile in both directions) around the user’s position.

Try it out:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 197

Pressing the User button zooms in to the user’s location

The other button, Locations, is going to show the region that contains all the user’s
saved locations. Before you can do that, you first have to fetch those locations from
the data store.

Even though this screen doesn’t have a table view, you could still use an
NSFetchedResultsController object to handle all the fetching and automatic change
detection. But this time I want to make it hard on you, so you’re going to do the
fetching by hand.

➤ Add a new array to MapViewController.swift:

var locations = [Location]()

➤ Also add the updateLocations() method:

func updateLocations() {
 mapView.removeAnnotations(locations)

 let entity = Location.entity()

 let fetchRequest = NSFetchRequest<Location>()
 fetchRequest.entity = entity

 locations = try! managedObjectContext.fetch(fetchRequest)
 mapView.addAnnotations(locations)
}

The fetch request is nothing new, except this time you’re not sorting the Location
objects. The order of the Location objects in the array doesn’t really matter to the
map view, only their latitude and longitude coordinates.

You’ve seen how to handle errors with a do-try-catch block. If you’re certain that a
particular method call will never fail, you can dispense with the do and catch and
just write try! with an exclamation point. As with other things in Swift that have
exclamation points, if it turns out that you were wrong, the app will crash without
mercy. But in this case there isn’t much that can go wrong so you can choose to

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 198

live a little more dangerously.

Once you’ve obtained the Location objects, you call mapView.addAnnotations() to
add a pin for each location on the map.

The idea is that updateLocations() will be executed every time there is a change in
the data store. How you’ll do that is of later concern, but the point is that when this
happens the locations array may already exist and may contain Location objects.
If so, you first remove the pins for these old objects with removeAnnotations().

Xcode says the lines with mapView.addAnnotations() and removeAnnotations() have
errors. This is to be expected and you’ll fix it in a minute.

➤ First, add the viewDidLoad() method:

override func viewDidLoad() {
 super.viewDidLoad()
 updateLocations()
}

This fetches the Location objects and shows them on the map when the view loads.
Nothing special here.

Before this class can use the managedObjectContext, you have to give it a reference
to that object first. As before, that happens in AppDelegate.

➤ In AppDelegate.swift, extend application(didFinishLaunchingWithOptions) to
pass the context object to the MapViewController as well. This goes inside the if
let statement:

let mapViewController = tabBarViewControllers[2] as! MapViewController
mapViewController.managedObjectContext = managedObjectContext

You’re not quite done yet. In updateLocations() you told the map view to add the
Location objects as annotations (an annotation is a pin on the map). But MKMapView
expects an array of MKAnnotation objects, not your own Location class.

Luckily, MKAnnotation is a protocol, so you can turn the Location objects into map
annotations by making the class conform to that protocol.

➤ Change the class line from Location+CoreDataClass.swift to:

public class Location: NSManagedObject, MKAnnotation {

Just because Location is an object that is managed by Core Data doesn’t mean you
can’t add your own stuff to it. It’s still an object!

Exercise. Xcode now says “Use of undeclared type MKAnnotation”. Why is that?

Answer: You still need to import MapKit. Add that line at the top of the file.

Exercise. Xcode still gives a compiler error when you try to build the project. What

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 199

is wrong now?

Answer: Because you said Location conforms to the protocol MKAnnotation, you
have to provide all the required features from that protocol in the Location class.

The MKAnnotation protocol requires the class to implement three properties:
coordinate, title, and subtitle.

It obviously needs to know the coordinate in order to place the pin in the correct
place on the map. The title and subtitle are used for the “call-out” that appears
when you tap on the pin.

➤ Add the following code to Location+CoreDataClass.swift:

var coordinate: CLLocationCoordinate2D {
 return CLLocationCoordinate2DMake(latitude, longitude)
}

var title: String? {
 if locationDescription.isEmpty {
 return "(No Description)"
 } else {
 return locationDescription
 }
}

var subtitle: String? {
 return category
}

Do you notice anything special here? All three items are instance variables (because
of var), but they also have a block of source code associated with them.

These variables are read-only computed properties. That means they don’t
actually store a value into a memory location. Whenever you access the coordinate,
title, or subtitle variables, they perform the logic from their code blocks. That’s
why they are computed properties: they compute something.

These properties are read-only because they only return a value – you can’t give
them a new value using the assignment operator.

The following is OK because it reads the value of the property:

let s = location.title

But you cannot do this:

location.title = "Time for a change"

The only way the title property can change is if the locationDescription value
changes. You could also have written this as a method:

func title() -> String? {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 200

 if locationDescription.isEmpty {
 return "(No Description)"
 } else {
 return locationDescription
 }
}

This is equivalent to using the computed property. Whether to use a method or a
computed property is often a matter of taste and you’ll see both ways used
throughout the iOS frameworks.

(By the way, it is also possible to make read-write computed properties that can be
changed, but the MKAnnotation protocol doesn’t use those.)

➤ Run the app and switch to the Map screen. It should now show pins for all the
saved locations. If you tap on a pin, the callout shows the chosen description and
category.

The map shows pins for the saved locations

Note: So far all the protocols you’ve seen were used for making delegates, but
that’s not the case here. Location is not a delegate of anything.

The MKAnnotation protocol simply lets you pretend that Location is an
annotation that can be placed on a map view. You can use this trick with any
object you want; as long as the object implements the MKAnnotation protocol it
can be shown on a map.

Protocols let objects wear different hats.

Pressing the User button makes the app zoom to the user’s current coordinates but
the same thing doesn’t happen yet for the Locations button and the location pins.

By looking at the highest and lowest values for the latitude and longitude of all the

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 201

Location objects, you can calculate a region and then tell the map view to zoom to
that region.

➤ In MapViewController.swift, add a new method, region(for):

func region(for annotations: [MKAnnotation]) -> MKCoordinateRegion {
 let region: MKCoordinateRegion

 switch annotations.count {
 case 0:
 region = MKCoordinateRegionMakeWithDistance(
 mapView.userLocation.coordinate, 1000, 1000)

 case 1:
 let annotation = annotations[annotations.count - 1]
 region = MKCoordinateRegionMakeWithDistance(
 annotation.coordinate, 1000, 1000)

 default:
 var topLeftCoord = CLLocationCoordinate2D(latitude: -90,
 longitude: 180)
 var bottomRightCoord = CLLocationCoordinate2D(latitude: 90,
 longitude: -180)

 for annotation in annotations {
 topLeftCoord.latitude = max(topLeftCoord.latitude,
 annotation.coordinate.latitude)
 topLeftCoord.longitude = min(topLeftCoord.longitude,
 annotation.coordinate.longitude)
 bottomRightCoord.latitude = min(bottomRightCoord.latitude,
 annotation.coordinate.latitude)
 bottomRightCoord.longitude = max(bottomRightCoord.longitude,
 annotation.coordinate.longitude)
 }

 let center = CLLocationCoordinate2D(
 latitude: topLeftCoord.latitude -
 (topLeftCoord.latitude - bottomRightCoord.latitude) / 2,
 longitude: topLeftCoord.longitude -
 (topLeftCoord.longitude - bottomRightCoord.longitude) / 2)

 let extraSpace = 1.1
 let span = MKCoordinateSpan(
 latitudeDelta: abs(topLeftCoord.latitude -
 bottomRightCoord.latitude) * extraSpace,
 longitudeDelta: abs(topLeftCoord.longitude -
 bottomRightCoord.longitude) * extraSpace)

 region = MKCoordinateRegion(center: center, span: span)
 }

 return mapView.regionThatFits(region)
}

region(for) has three situations to handle. It uses a switch statement to look at
the number of annotations and then chooses the corresponding case:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 202

• There are no annotations. You’ll center the map on the user’s current position.

• There is only one annotation. You’ll center the map on that one annotation.

• There are two or more annotations. You’ll calculate the extent of their reach and
add a little padding. See if you can make sense of those calculations. The max()
function looks at two values and returns the larger of the two; min() returns the
smaller; abs() always makes a number positive (absolute value).

Note that this method does not use Location objects for anything. It assumes that
all the objects in the array conform to the MKAnnotation protocol and it only looks at
that part of the objects. As far as region(for) is concerned, what it deals with are
annotations. It just so happens that these annotations are described by your
Location objects.

That is the power of using protocols. It also allows you to use this method in any
app that uses Map Kit, without modifications. Pretty neat.

➤ Change the showLocations() action method to:

@IBAction func showLocations() {
 let theRegion = region(for: locations)
 mapView.setRegion(theRegion, animated: true)
}

This calls region(for) to calculate a reasonable region that fits all the Location
objects and then sets that region on the map view.

➤ Finally, change viewDidLoad():

override func viewDidLoad() {
 super.viewDidLoad()
 updateLocations()

 if !locations.isEmpty {
 showLocations()
 }
}

It’s a good idea to show the user’s locations the first time you switch to the Map
tab, so viewDidLoad() calls showLocations() too.

➤ Run the app and press the Locations button. The map view should now zoom in
on your saved locations. (This only works well if the locations aren’t too far apart,
of course.)

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 203

The map view zooms in to fit all your saved locations

Making your own pins
You made the MapViewController conform to the MKMapViewDelegate protocol but so
far you haven’t done anything with that.

This delegate is useful for creating your own annotation views. Currently a default
pin and callout are being used, but you can change this to anything you like.

➤ Add the following code to MapViewController.swift, inside the extension at the
bottom:

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {
 // 1
 guard annotation is Location else {
 return nil
 }
 // 2
 let identifier = "Location"
 var annotationView = mapView.dequeueReusableAnnotationView(
 withIdentifier: identifier)
 if annotationView == nil {
 let pinView = MKPinAnnotationView(annotation: annotation,
 reuseIdentifier: identifier)
 // 3
 pinView.isEnabled = true
 pinView.canShowCallout = true
 pinView.animatesDrop = false
 pinView.pinTintColor = UIColor(red: 0.32, green: 0.82,
 blue: 0.4, alpha: 1)

 // 4
 let rightButton = UIButton(type: .detailDisclosure)
 rightButton.addTarget(self,
 action: #selector(showLocationDetails),
 for: .touchUpInside)
 pinView.rightCalloutAccessoryView = rightButton

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 204

 annotationView = pinView
 }

 if let annotationView = annotationView {
 annotationView.annotation = annotation

 // 5
 let button = annotationView.rightCalloutAccessoryView as! UIButton
 if let index = locations.index(of: annotation as! Location) {
 button.tag = index
 }
 }

 return annotationView
}

This is very similar to what a table view data source does in “cellForRowAt”, except
that you’re not dealing with table view cells here but with MKAnnotationView objects.
Step-by-step this is what happens:

1. Because MKAnnotation is a protocol, there may be other objects apart from the
Location object that want to be annotations on the map. An example is the blue
dot that represents the user’s current location.

You should leave such annotations alone, so you use the special “is” type check
operator to determine whether the annotation is really a Location object. If it
isn’t, you return nil to signal that you’re not making an annotation for this
other kind of object. The guard statement you’re using here works like an if: it
only continues if the condition – annotation is Location – is true.

2. This looks similar to creating a table view cell. You ask the map view to re-use
an annotation view object. If it cannot find a recyclable annotation view, then
you create a new one.

Note that you’re not limited to using MKPinAnnotationView for your annotations.
This is the standard annotation view class, but you can also create your own
MKAnnotationView subclass and make it look like anything you want. Pins are
only one option.

3. This sets some properties to configure the look and feel of the annotation view.
Previously the pins were red, but you make them green here.

4. This is where it gets interesting. You create a new UIButton object that looks
like a detail disclosure button (a blue circled i). You use the target-action
pattern to hook up the button’s “Touch Up Inside” event with a new method
showLocationDetails(), and add the button to the annotation view’s accessory
view.

5. Once the annotation view is constructed and configured, you obtain a reference
to that detail disclosure button again and set its tag to the index of the Location
object in the locations array. That way you can find the Location object later in

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 205

showLocationDetails() when the button is pressed.

➤ Add the showLocationDetails() method but leave it empty for now. Put it inside
the main class, not the extension.

func showLocationDetails(_ sender: UIButton) {
}

Because you’ve told the button its #selector is showLocationDetails, the app won’t
compile unless you add at least an empty version of this method.

The method takes one parameter, sender, that refers to the control that sent the
action message. In this case the sender will be the (i) button. That’s why the type
of the sender parameter is UIButton.

➤ Run the app. The pins are now green and the callout has a custom button. (If the
pins stay red, then make sure you connected the view controller as the delegate of
the map view in the storyboard.)

The annotations use your own view

Guard
In the map view delegate method, you wrote the following:

guard annotation is Location else {
 return nil
}

The guard statement lets you try something. If the result is nil or false, the code
from the else block is performed.

If everything works like it’s supposed to, the code simply skips the else block and
continues.

You could also have written it as follows:

if annotation is Location {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 206

 // do all the other things
 . . .
} else {
 return nil
}

This uses the familiar if statement. But notice how the code that handles the
situation when annotation is not a Location is now all the way at the bottom of the
method. If you have several of these if-statements, your code ends up looking like
this:

if condition1 {
 if condition2 {
 if condition3 {
 . . .
 } else {
 return nil // condition3 is false
 }
 } else {
 return nil // condition2 is false
 }
} else {
 return nil // condition1 is false
}

This kind of structure is known as the “Pyramid of Doom”. There’s nothing wrong
with it per se, but it can make the program flow hard to decipher. With guard you
can write this as:

guard condition1 else {
 return nil // condition1 is false
}
guard condition2 else {
 return nil // condition2 is false
}
guard condition3 else {
 return nil // condition3 is false
}
. . .

Now all the conditions are checked first and any errors or unexpected situations are
handled straight away. Many programmers find this easier to read.

Tapping a pin on the map now brings up a callout with a blue (i) button. What
should this button do? Show the Edit Location screen, of course!

➤ Open the storyboard. Select the Map View Controller (the actual view controller,
not some view inside it) and Ctrl-drag to the Navigation Controller that contains

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 207

the Location Details View Controller.

Make this a new Present Modally segue named EditLocation.

Tip: If making this connection gives you problems because the storyboard won’t fit
on your screen, then try Ctrl-dragging from the outline pane. You can also zoom out
and make the segue.

The storyboard now looks like this:

The Location Details screen is connected to all three screens

I had to zoom out the Storyboard in order to make the screen capture. It’s not very
readable at this level but you can see that there are now three segues going to the
Location Details screen (or at least to its navigation controller).

➤ Back in MapViewController.swift, change the showLocationDetails() method
to trigger the segue:

func showLocationDetails(sender: UIButton) {
 performSegue(withIdentifier: "EditLocation", sender: sender)
}

Because the segue isn’t connected to any particular control in the view controller,
you have to perform it manually. You pass along the button object as the sender, so
you can read its tag property in prepare-for-segue.

➤ Add the prepare(for:sender:) method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "EditLocation" {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 208

 let navigationController = segue.destination
 as! UINavigationController

 let controller = navigationController.topViewController
 as! LocationDetailsViewController

 controller.managedObjectContext = managedObjectContext

 let button = sender as! UIButton
 let location = locations[button.tag]
 controller.locationToEdit = location
 }
}

This is very similar to what you did in the Locations screen, except that now you get
the Location object to edit from the locations array, using the tag property of the
sender button as the index in that array.

➤ Run the app, tap on a pin and edit the location.

It works, except that the annotation’s callout doesn’t change until you tap the pin
again. Likewise, changes on the other screens, such as adding or deleting a
location, have no effect on the map.

This is the same problem you had earlier with the Locations screen. Because the list
of Location objects is only fetched once in viewDidLoad(), any changes that happen
afterwards are overlooked.

The way you’re going to fix this for the Map screen is by using notifications. Recall
that you have already put NotificationCenter to use for dealing with Core Data
save errors.

As it happens, Core Data also sends out a bunch of notifications when changes are
made to the data store. You can subscribe to these notifications and update the
map view when you receive them.

➤ In MapViewController.swift, change the managedObjectContext property
declaration to:

var managedObjectContext: NSManagedObjectContext! {
 didSet {
 NotificationCenter.default.addObserver(forName:
 Notification.Name.NSManagedObjectContextObjectsDidChange,
 object: managedObjectContext,
 queue: OperationQueue.main) { notification in
 if self.isViewLoaded {
 self.updateLocations()
 }
 }
 }
}

This is another example of a property observer put to good use.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 209

As soon as managedObjectContext is given a value – which happens in AppDelegate
during app startup – the didSet block tells the NotificationCenter to add an
observer for the NSManagedObjectContextObjectsDidChange notification.

This notification with the very long name is sent out by the managedObjectContext
whenever the data store changes. In response you would like the following closure
to be called. For clarity, here’s what happens in the closure:

{ notification in
 if self.isViewLoaded {
 self.updateLocations()
 }
}

This couldn’t be simpler: you just call updateLocations() to fetch all the Location
objects again. This throws away all the old pins and it makes new pins for all the
newly fetched Location objects. Granted, it’s not a very efficient method if there are
hundreds of annotation objects, but for now it gets the job done.

Note: You use if self.isViewLoaded to make sure updateLocations() only
gets called when the map view is loaded.

Because this screen sits in a tab, the view from MapViewController does not
actually get loaded from the storyboard until the user switches to the Map tab.

So the view may not have been loaded yet when the user tags a new location.
In that case it makes no sense to call updateLocations() – it could even crash
the app because the MKMapView object doesn’t exist yet at that point!

➤ Run the app. First go to the Map screen to see your existing location pins. Then
tag a new location. The map should have added a new pin for it, although you may
have to press the Locations bar button to make the new pin appear if it’s outside
the visible range.

Have another look at that closure. The “notification in” bit is the parameter for
the closure. Like functions and methods, closures can take parameters.

Because this particular closure gets called by NotificationCenter, you’re given an
Notification object in the notification parameter. Since you’re not using this
notification object anywhere in the closure, you could also write it like this:

{ _ in
 if self.isViewLoaded {
 self.updateLocations()
 }
}

You’ve already seen the _ underscore used in a few places in the code. This symbol
is called the wildcard and you can use it whenever a name is expected but you
don’t really care about it.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 210

Here, the _ tells Swift you’re not interested in the closure’s parameter. It also helps
to reduce visual clutter in the source code; it’s obvious at a glance that this
parameter – whatever it may be – isn’t being used in the closure.

So whenever you see the _ used in Swift source code it just means, “there’s
something here but the programmer has chosen to ignore it”.

Exercise. The Notification object has a userInfo dictionary. From that dictionary
it is possible to figure out which objects were inserted/deleted/updated. For
example, use the following print()s to examine this dictionary:

if let dictionary = notification.userInfo {
 print(dictionary["inserted"])
 print(dictionary["deleted"])
 print(dictionary["updated"])
}

This will print out an (optional) array of Location objects or nil if there were no
changes. Your mission, should you choose to accept it: try to make the reloading of
the locations more efficient by not re-fetching the entire list of Location objects, but
by only inserting or deleting those that have changed. Good luck! (You can find the
solutions from other readers on the raywenderlich.com forums.)

That’s it for the Map screen. Oh, one more thing. To fix the issue with the status bar
you need to make the view controller the delegate for the navigation bar.

➤ Add a new extension at the bottom of MapViewController.swift:

extension MapViewController: UINavigationBarDelegate {
 func position(for bar: UIBarPositioning) -> UIBarPosition {
 return .topAttached
 }
}

This tells the navigation bar to extend under the status bar area.

➤ Finally, in the storyboard Ctrl-drag from the navigation bar to the view controller
to make the delegate connection.

Now the gap between the navigation bar and the top of the screen is gone:

The navigation bar extends to the top of the screen

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 211

You can find the project files for the app up to this point under 05 - Map View in
the tutorial’s Source Code folder.

The photo picker
UIKit comes with a built-in view controller, UIImagePickerController, that lets the
user take new photos and videos or pick them from their Photo Library.

You’re going to make the Add Photo button from the Tag/Edit Location screen save
the photo along with the location so the user has a nice picture to look at.

A photo in the Tag Location screen

Just as you need to ask the user for permission before you can read the device’s
GPS coordinates, so does accessing the user’s photo library.

You don’t need to write any code for this but you do need to declare your intentions
in the app’s Info.plist. If you don’t do this, the app will crash as soon as you try to
use the UIImagePickerController.

➤ Open Info.plist and add a new row (either right-click and select Add Row or
use the Editor → Add Item menu).

For the key, use NSPhotoLibraryUsageDescription, or choose Privacy - Photo
Library Usage Description from the list.

For the value, type: Add photos to your locations.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 212

Adding a usage description in Info.plist

Now when the app opens the photo picker for the first time, iOS will tell the user
what the app intends to use the photos for, using the description you just added to
Info.plist.

➤ In LocationDetailsViewController.swift, add the following extension to the
bottom of the source file:

extension LocationDetailsViewController:
 UIImagePickerControllerDelegate, UINavigationControllerDelegate {

 func takePhotoWithCamera() {
 let imagePicker = UIImagePickerController()
 imagePicker.sourceType = .camera
 imagePicker.delegate = self
 imagePicker.allowsEditing = true
 present(imagePicker, animated: true, completion: nil)
 }
}

The UIImagePickerController is a view controller like any other, but it is built into
UIKit and it takes care of the entire process of taking new photos and picking them
from the user’s photo library.

All you need to do is create a UIImagePickerController instance, set its properties
to configure the picker, set its delegate, and then present it. When the user closes
the image picker screen, the delegate methods will let you know what happened.

That’s exactly how you’ve been designing your own view controllers. (You don’t add
the UIImagePickerController to the storyboard, though.)

Note: You’re doing this in an extension because it allows you to group all the
photo-picking related functionality together.

If you wanted to, you could put these methods into the main class body. That
would work fine too, but view controllers tend to become very big with many
methods that all do different things.

As a way to preserve your sanity, it’s nice to extract conceptually related
methods – such as everything that has to do with picking photos – and place
them together in their own extension.

You could even move each of these extensions to their own source file, for
example “LocationDetailsViewController+PhotoPicking.swift”.

➤ Add the following methods to the extension:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 213

func imagePickerController(_ picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : Any]) {

 dismiss(animated: true, completion: nil)
}

func imagePickerControllerDidCancel(_ picker: UIImagePickerController) {
 dismiss(animated: true, completion: nil)
}

Currently these delegate methods simply remove the image picker from the screen.
Soon you’ll take the image the user picked and add it to the Location object, but for
now you just want to make the image picker show up.

Note that the view controller (in this case the extension) must conform to both
UIImagePickerControllerDelegate and UINavigationControllerDelegate for this to
work, but you don’t have to implement any of the UINavigationControllerDelegate
methods.

➤ Now change tableView(didSelectRowAt) in the class:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 if indexPath.section == 0 && indexPath.row == 0 {
 . . .
 } else if indexPath.section == 1 && indexPath.row == 0 {
 takePhotoWithCamera()
 }
}

Add Photo is the first row in the second section. When it’s tapped, you call the
takePhotoWithCamera() method that you just added.

➤ Run the app, tag a new location or edit an existing one, and press Add Photo.

If you’re running the app in the Simulator, then bam! It crashes. The error message
is this:

*** Terminating app due to uncaught exception
'NSInvalidArgumentException', reason: 'Source type 1 not available'

The culprit for the crash is the line:

imagePicker.sourceType = .camera

Not all devices have a camera, and neither does the Simulator. If you try to use the
UIImagePickerController with a sourceType that is not supported by the device or
the Simulator, the app crashes.

If you run the app on your device – and if it has a camera (which it probably does if
it’s a recent model) – then you should see this:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 214

The camera interface

That is very similar to what you see when you take pictures using the iPhone’s
Camera app. (MyLocations doesn’t let you record video, but you can certainly
enable this feature in your own apps.)

You can still test the image picker on the Simulator, but instead of using the camera
you have to use the photo library.

➤ Add the choosePhotoFromLibrary() method to the extension:

func choosePhotoFromLibrary() {
 let imagePicker = UIImagePickerController()
 imagePicker.sourceType = .photoLibrary
 imagePicker.delegate = self
 imagePicker.allowsEditing = true
 present(imagePicker, animated: true, completion: nil)
}

These two methods do essentially the same, except now you set the sourceType
to .photoLibrary.

➤ Change “didSelectRowAt” to call choosePhotoFromLibrary() instead of
takePhotoWithCamera().

➤ Run the app in the Simulator and press Add Photo.

First, the user needs to give the app permission to access the photo library:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 215

The user needs to allow the app access to the photo library

If they tap Don’t Allow, the photo picker screen remains empty. (Users can undo
this choice in the Settings app, under Privacy → Photos.)

➤ Choose OK to allow the app to use the photo library.

At this point you might see this:

There are no photos in the library

If this happens, the simulator’s photo library has no photos in it yet. It’s also
possible you already see a handful of stock images; this differs between Xcode
versions.

➤ If you don’t see any images, stop the app and click on the built-in Photos app in
the Simulator. This should display a handful of sample photos. Run the app again
and try picking a photo. You may or may not see these sample photos now. If not,
you’ll have to add your own.

There are several ways you can add new photos to the Simulator. You can go into
Safari (on the Simulator) and search the internet for an image. Then press down
on the image until a menu appears and choose Save Image:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 216

Adding images to the Simulator

Instead of surfing the internet for images, you can also simply drop an image file on
top of the Simulator window. This adds the picture to your library in the Photos app.

Finally, you can use the Terminal and the simctl command. Type all on one line:

/Applications/Xcode.app/Contents/Developer/usr/bin/simctl addphoto booted
~/Desktop/MyPhoto.JPG

The simctl tool can be used to manage your Simulators (type simctl help for a list
of options). The command “addphoto booted” adds the specified image to the active
Simulator’s photo library.

➤ Run the app again. Now you can choose a photo from the Photo Library:

The photos in the library

➤ Choose one of the photos. The screen now changes to:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 217

The user can tweak the photo

This happens because you set the image picker’s allowsEditing property to true.
With this setting enabled, the user can do some quick editing on the photo before
making his final choice. (In the Simulator you can hold down Alt/Option while
dragging to rotate and zoom the photo.)

So there are two types of image pickers you can use, the camera and the Photo
Library, but the camera won’t work everywhere. It’s a bit limiting to restrict the app
to just picking photos from the library, though.

You’ll have to make the app a little smarter and allow the user to choose the
camera when it is present.

First you check whether the camera is available. When it is, you show an action
sheet to let the user choose between the camera and the Photo Library.

➤ Add the following methods to LocationDetailsViewController.swift, in the
photo picking extension:

func pickPhoto() {
 if UIImagePickerController.isSourceTypeAvailable(.camera) {
 showPhotoMenu()
 } else {
 choosePhotoFromLibrary()
 }
}

func showPhotoMenu() {
 let alertController = UIAlertController(title: nil, message: nil,
 preferredStyle: .actionSheet)

 let cancelAction = UIAlertAction(title: "Cancel", style: .cancel,
 handler: nil)
 alertController.addAction(cancelAction)

 let takePhotoAction = UIAlertAction(title: "Take Photo",
 style: .default, handler: nil)
 alertController.addAction(takePhotoAction)

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 218

 let chooseFromLibraryAction = UIAlertAction(title:
 "Choose From Library", style: .default, handler: nil)
 alertController.addAction(chooseFromLibraryAction)

 present(alertController, animated: true, completion: nil)
}

You’re using UIImagePickerController’s isSourceTypeAvailable() method to check
whether there’s a camera present. If not, you call choosePhotoFromLibrary() as that
is the only option then. But when the device does have a camera you show a
UIAlertController on the screen.

Unlike the alert controllers you’ve used before, this one has the .actionSheet style.
An action sheet works very much like an alert view, except that it slides in from the
bottom of the screen.

➤ In “didSelectRowAt”, change the call to choosePhotoFromLibrary() to pickPhoto()
instead. This is the last time you’re changing this line, honest.

➤ Run the app on your device to see the action sheet in action:

The action sheet that lets you choose between camera and photo library

Tapping any of the buttons in the action sheet simply dismisses the action sheet but
doesn’t do anything else yet.

By the way, if you want to test this action sheet on the Simulator, then you can fake
the availability of the camera by writing the following in pickPhoto():

if true || UIImagePickerController.isSourceTypeAvailable(.camera) {

That will always show the action sheet because the condition is now always true.

The choices in the action sheet are provided by UIAlertAction objects. The handler:
parameter determines what happens when you press the corresponding button in
the action sheet.

Right now the handlers for all three choices – Take Photo, Choose From Library,
Cancel – are nil, so nothing will happen.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 219

➤ Change these lines to the following:

let takePhotoAction = UIAlertAction(title: "Take Photo",
 style: .default, handler: { _ in self.takePhotoWithCamera() })

let chooseFromLibraryAction = UIAlertAction(
 title: "Choose From Library", style: .default,
 handler: { _ in self.choosePhotoFromLibrary() })

This gives handler: a closure that calls the corresponding method from the
extension. You use the _ wildcard to ignore the parameter that is passed to this
closure (which is a reference to the UIAlertAction itself).

➤ Run the app make sure the buttons from the action sheet work properly.

There may be a small delay between pressing any of these buttons before the
image picker appears but that’s because it’s a big component and iOS needs a few
seconds to load it up.

Notice that the Add Photo cell remains selected (dark gray background) when you
cancel the action sheet. That doesn’t look so good.

➤ In tableView(didSelectRowAt), add the following line before the call to
pickPhoto():

tableView.deselectRow(at: indexPath, animated: true)

This first deselects the Add Photo row. Try it out, it looks better this way. The cell
background quickly fades from gray back to white as the action sheet slides into the
screen.

By the way, if you still have the Core Data debug output enabled, then you should
see a whole bunch of output in the Xcode Debug Area when the image picker is
active. Apparently the UIImagePickerController uses Core Data as well!

Showing the image
Now that the user can pick a photo, you should display it somewhere (otherwise,
what’s the point?). After picking a photo, you’ll change the Add Photo cell to hold
the photo. The cell will grow to fit the photo and the Add Photo label is gone.

➤ Add two new outlets to the class in LocationDetailsViewController.swift:

@IBOutlet weak var imageView: UIImageView!
@IBOutlet weak var addPhotoLabel: UILabel!

➤ In the storyboard, drag an Image View into the Add Photo cell. It doesn’t really
matter how big it is or where you put it. You’ll programmatically move it to the
proper place later. (This is the reason you made this a custom cell way back when,
so you could add this image view into it.)

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 220

Adding an Image View to the Add Photo cell

Note: On macOS Sierra the image view appears as a white rectangle instead
of a blue rectangle.

➤ Connect the Image View to the view controller’s imageView outlet. Also connect
the Add Photo label to the addPhotoLabel outlet.

➤ Select the Image View. In the Attributes inspector, check its Hidden attribute
(in the Drawing section). This makes the image view initially invisible, until you
have a photo to give it.

Now that you have an image view, let’s make it display something.

➤ Add a new instance variable to LocationDetailsViewController.swift:

var image: UIImage?

If no photo is picked yet, image is nil, so this must be an optional.

➤ Add the show(image) method to the class:

func show(image: UIImage) {
 imageView.image = image
 imageView.isHidden = false
 imageView.frame = CGRect(x: 10, y: 10, width: 260, height: 260)
 addPhotoLabel.isHidden = true
}

This puts the image into the image view, makes the image view visible and gives it
the proper dimensions. It also hides the Add Photo label because you don’t want it
to overlap the image view.

➤ Change the imagePickerController(didFinishPickingMediaWithInfo) method
from the photo picking extension to the following:

func imagePickerController(_ picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : Any]) {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 221

 image = info[UIImagePickerControllerEditedImage] as? UIImage

 if let theImage = image {
 show(image: theImage)
 }

 dismiss(animated: true, completion: nil)
}

This is the method that gets called when the user has selected a photo in the image
picker.

You can tell by the notation [String : Any] that the info parameter is a dictionary.
Whenever you see [A : B] you’re dealing with a dictionary that has keys of type
“A” and values of type “B”.

The info dictionary contains a variety of data describing the image that the user
picked. You use the UIImagePickerControllerEditedImage key to retrieve a UIImage
object that contains the image from after the user moved and/or scaled it. (You can
also get the original image if you wish, using a different key.)

Once you have the photo, you store it in the image instance variable so you can use
it later.

Dictionaries always return optionals, because there is a theoretical possibility that
the key you asked for – UIImagePickerControllerEditedImage in this case – doesn’t
actually exist in the dictionary.

Under normal circumstances you’d unwrap this optional but here the image instance
variable is an optional itself so no unwrapping is necessary.

If info[UIImagePickerControllerEditedImage] is nil, then image will be nil too. You
do need to cast the value from the meaningless Any to UIImage using the as?
operator. In this case you need to use the optional cast, as? instead of as!, because
image is an optional instance variable.

Once you have the image and it is not nil, the call to show(image) puts it in the Add
Photo cell.

Exercise. See if you can rewrite the above logic to use a didSet property observer
on the image instance variable. If you succeed, then placing the photo into image
will automatically update the UIImageView, without needing to call show(image).

➤ Run the app and choose a photo. Whoops, it looks like you have a small problem
here:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 222

The photo gets cut off

(It’s also possible that the photo overlaps the rows below it. In any case, it doesn’t
look good…)

The show(image) method made the image view 260-by-260 points tall but the table
view cell doesn’t automatically resize to fit that image view. You’ll have to add some
logic to the “heightForRowAt” table view method to make the table view cell resize.

➤ Change the tableView(heightForRowAt) method:

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 if indexPath.section == 0 && indexPath.row == 0 {
 return 88

 } else if indexPath.section == 1 { // this else if is new
 if imageView.isHidden {
 return 44
 } else {
 return 280
 }

 } else if indexPath.section == 2 && indexPath.row == 2 {
 . . .

If there is no image, then the height for the Add Photo cell is 44 points just like a
regular cell. But if there is an image, it’s a lot higher: 280 points. That is 260 points
for the image view plus 10 points margin on the top and bottom.

➤ Add the next line to imagePickerController(didFinishPickingMediaWithInfo),
just before you dismiss the view controller:

tableView.reloadData()

This refreshes the table view and sets the photo row to the proper height.

➤ Try it out. The cell now resizes and is big enough for the whole photo. The image
does appear to be stretched out a little, though.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 223

The photo is stretched out a bit

The image view is square but most photos won’t be. By default, an image view will
stretch the image to fit the entire content area. That’s probably not what you want
for this app.

➤ Go to the storyboard and select the Image View (it may be hard to see on
account of it being hidden, but you can still find it in the outline pane). In the
Attributes inspector, set its Content Mode to Aspect Fit.

Changing the image view’s content mode

This will keep the image’s aspect ratio intact as it is resized to fit into the image
view. Play a bit with the other content modes to see what they do. (Aspect Fill is
similar to Aspect Fit, except that it tries to fill up the entire view.)

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 224

The aspect ratio of the photo is kept intact

That looks a bit better, although there are now larger margins at the top and
bottom of the image.

Exercise. Make the height of the photo table view cell dynamic, depending on the
aspect ratio of the image. This is a tough one! You can keep the width of the image
view at 260 points. This should correspond to the width of the UIImage object. You
get the aspect ratio by doing image.size.width / image.size.height. With this ratio
you can calculate what the height of the image view and the cell should be. Good
luck! You can find solutions from other readers at forums.raywenderlich.com

By the way, notice how the if-statements in tableView(heightForRowAt) all look at
the index-path’s section and/or row?

if indexPath.section == 0 && indexPath.row == 0 {
 . . .
} else if indexPath.section == 1 {
 . . .
} else if indexPath.section == 2 && indexPath.row == 2 {
 . . .
} else {
 . . .
}

Whenever you see if – else if – else if – else where the conditions all check
the same thing, it’s a good opportunity to use a switch statement instead.

➤ Change the tableView(heightForRowAt) method to:

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {

 switch (indexPath.section, indexPath.row) {
 case (0, 0):
 return 88

 case (1, _):
 return imageView.isHidden ? 44 : 280

 case (2, 2):

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 225

 addressLabel.frame.size = CGSize(
 width: view.bounds.size.width - 115,
 height: 10000)
 addressLabel.sizeToFit()
 addressLabel.frame.origin.x = view.bounds.size.width -
 addressLabel.frame.size.width - 15
 return addressLabel.frame.size.height + 20

 default:
 return 44
 }
}

The logic inside each of the sections is the same as before, but now the different
cases are easier to distinguish:

switch (indexPath.section, indexPath.row) {
 case (0, 0):
 case (1, _):
 case (2, 2):
 default:
}

This switch statement puts indexPath.section and indexPath.row into a tuple, and
then uses pattern matching to look for the different cases:

• case (0, 0) corresponds to section 0, row 0.

• case (1, _) corresponds to section 1, any row. The _ is the wildcard again, which
means any value for indexPath.row is accepted here.

• case (2, 2) corresponds to section 2, row 2.

• The default case is for any other rows in sections 0 and 2.

Using switch is very common in Swift because it makes large blocks of if – else
if statements much easier to read.

Note: A tuple is nothing more than a list of values inside () parentheses. For
example, (10, 3.14, "Hello") is a tuple with three elements.

Tuples have various uses, such as allowing a method to return more than one
value (simply put the different values into a tuple and return that). They are
also very convenient in switch statements.

There was another change. The following lines have changed from this,

if imageView.isHidden {
 return 44
} else {
 return 280
}

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 226

into this:

return imageView.hidden ? 44 : 280

The ? : construct is the ternary conditional operator. It works like an if – else
statement compressed into a single line.

If the thing before the ? is true (imageView.isHidden) it returns the first value, 44. If
false, it returns the second value, 280.

Using ? : is often simpler than writing it out as if – else.

Be careful: there must be a space between imageView.isHidden and ? or else Swift
thinks isHidden is an optional that you’re trying to unwrap, which results in an
error. This is a case where the same symbol, ?, can mean more than one thing.

Going to the background
The user can take or pick a photo now but the app doesn’t save it yet in the data
store. Before you get to that, there are still a few improvements to make with the
image picker.

Apple recommends that apps remove any alert or action sheet from the screen
when the user presses the Home button to put the app in the background.

The user may return to the app hours or days later and they will have forgotten
what they were going to do. The presence of the alert or action sheet is confusing
and the user will be thinking, “What’s that thing doing here?!”

To prevent this from happening, you’ll make the Tag Location screen a little more
attentive. When the app goes to the background, it will dismiss the action sheet if
that is currently showing. You’ll do the same for the image picker.

You’ve seen in the Checklists tutorial that the AppDelegate is notified by the
operating system when the app is about to go into the background, through its
applicationDidEnterBackground() method.

View controllers don’t have such a method, but fortunately iOS sends out “going to
the background” notifications through NotificationCenter that you can make the
view controller listen to.

Earlier you used the notification center to observe the notifications from Core Data.
This time you’ll listen for the UIApplicationDidEnterBackground notification.

➤ In LocationDetailsViewController.swift, add a new method:

func listenForBackgroundNotification() {
 NotificationCenter.default.addObserver(
 forName: Notification.Name.UIApplicationDidEnterBackground,
 object: nil, queue: OperationQueue.main) { _ in

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 227

 if self.presentedViewController != nil {
 self.dismiss(animated: false, completion: nil)
 }

 self.descriptionTextView.resignFirstResponder()
 }
}

This adds an observer for the UIApplicationDidEnterBackground notification. When
this notification is received, NotificationCenter will call the closure.

(Notice that you’re using the “trailing” closure syntax here; the closure is not a
parameter to addObserver(forName, …) but immediately follows the method call.)

If there is an active image picker or action sheet, you dismiss it. You also hide the
keyboard if the text view was active.

The image picker and action sheet are both presented as modal view controllers
that lie on top of everything else. If such a modal view controller is active,
UIViewController’s presentedViewController property has a reference to that modal
view controller.

So if presentedViewController is not nil you call dismiss() to close the modal
screen. (By the way, this has no effect on the category picker; that does not use a
modal segue but a push segue.)

➤ Call the listenForBackgroundNotification() method from within viewDidLoad().

➤ Try it out. Open the image picker (or the action sheet if you’re on a device that
has a camera) and exit to the home screen to put the app to sleep.

Then tap the app’s icon to activate the app again. You should now be back on the
Tag Location screen (or Edit Location screen if you opted to edit an existing one).
The image picker (or action sheet) has automatically closed.

Cool, that seems to work.

There’s one more thing to do. You should tell the NotificationCenter to stop
sending these background notifications when the Tag/Edit Location screen closes.
You don’t want NotificationCenter to send notifications to an object that no longer
exists, that’s just asking for trouble! The deinit method is a good place to tear this
down.

➤ First, add a new instance variable:

var observer: Any!

This will hold a reference to the observer, which is necessary to unregister it later.

The type of this variable is Any!, meaning that you don’t really care what sort of
object this is. (The exclamation point is used for its regular purpose, to make this

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 228

an implicitly unwrapped optional.)

➤ In listenForBackgroundNotification(), change the first line so that it stores the
return value of addObserver(forName, …) into this new instance variable:

func listenForBackgroundNotification() {
 observer = NotificationCenter.default.addObserver(forName: . . .

➤ Finally, add the deinit method:

deinit {
 print("*** deinit \(self)")
 NotificationCenter.default.removeObserver(observer)
}

You’re also adding a print() here so you can see some proof that the view
controller really does get destroyed when you close the Tag/Edit Location screen.

➤ Run the app, edit an existing location, and tap Done to close the screen.

I don’t know about you but I don’t see the *** deinit message anywhere in the
Xcode debug pane.

Guess what? The LocationDetailsViewController doesn’t get destroyed for some
reason. That means the app is leaking memory… Of course, this was all a big setup
on my part so I can tell you about closures and capturing.

Remember that in closures you always have to specify self when you want to
access an instance variable or call a method? That is because closures capture any
variables that are used inside the closure.

When it captures a variable, the closure simply stores a reference to that variable.
This allows it to use the variable at some later point when the closure is actually
performed.

Why is this important? If the code inside the closure uses a local variable, the
method that created this variable may no longer be active by the time the closure is
performed. After all, when a method ends all locals are destroyed. But when such a
local is captured by a closure, it stays alive until the closure is also done with it.

Because the closure needs to keep the objects from those captured variables alive
in the time between capturing and actually performing the closure, it stores a
strong reference to those objects. In other words, capturing means the closure
becomes a shared owner of the captured objects.

What may not be immediately obvious is that self is also one of those variables
and therefore gets captured by the closure. Sneaky! That’s why Swift requires you
to explicitly write out self inside closures, so you won’t forget this value is being
captured.

Because in self is the LocationDetailsViewController, as the closure captures self

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 229

it creates a strong reference to the LocationDetailsViewController object, and the
closure becomes a co-owner of this view controller. I bet you didn’t expect that!

Remember, as long as an object has owners it is being kept alive. So this closure is
keeping the view controller alive, even after you closed it!

This is known as an ownership cycle, because the view controller itself has a
strong reference back to the closure through the observer variable.

The relationship between the view controller and the closure

(In case you’re wondering, the view controller’s other owner is UIKit. The observer
is also being kept alive by NotificationCenter.)

This sounds like a classic Catch-22 problem! Fortunately, there is a way to break
the ownership cycle. You can give the closure a so-called capture list.

➤ Change listenForBackgroundNotification() to the following:

func listenForBackgroundNotification() {
 observer = NotificationCenter.default.addObserver(
 forName: Notification.Name.UIApplicationDidEnterBackground,
 object: nil, queue: OperationQueue.main) {
 [weak self] _ in

 if let strongSelf = self {
 if strongSelf.presentedViewController != nil {
 strongSelf.dismiss(animated: false, completion: nil)
 }
 strongSelf.descriptionTextView.resignFirstResponder()
 }
 }
}

There are a couple of new things here. Let’s look at the first part of the closure:

{ [weak self] _ in
 . . .
}

The [weak self] bit is the capture list for the closure. It tells the closure that the
variable self will still be captured, but as a weak reference, not strong. As a result,

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 230

the closure no longer keeps the view controller alive.

Weak references are allowed to become nil, which means the captured self is now
an optional inside the closure. You need to unwrap it with if let before you can
send messages to the view controller.

Other than that, the closure still does the exact same things as before.

➤ Try it out. Open the Tag/Edit Location screen and close it again. You should now
see the print() from deinit in the Xcode debug pane.

That means the view controller gets destroyed properly and the notification
observer is removed from NotificationCenter. Good riddance!

Exercise. What happens if you remove the call to removeObserver() from deinit?
Hint: add print(self) inside the closure.

Answer: Because the observer is not removed, it says alive and active. The next
time you put the app in the background, even if you’re not on the Tag/Edit Location
screen, the closure from this “old” observer is called again but self is now nil (the
object that it captured no longer exists).

This may seem innocuous but it’s a serious bug. Every time the user opens and
closes the Tag/Edit Location screen you end up with a new observer that stays in
memory forever. The if let prevents the app from crashing on a nil dereference of
self as you go to the background, but over time all these leftover observers will eat
up the app’s available memory.

That’s why it’s always a good idea to clean up after yourself. Use print()’s to make
sure your objects really get deallocated! (Xcode also comes with Instruments, a
handy tool that you can use to detect such issues.)

Saving photos
The ability to pick photos is rather useless if the app doesn’t also save them, so
that’s what you’ll do here.

It is possible to store images inside the Core Data store as “blobs” (Binary Large
OBjects), but that is not recommended. Large blocks of data are better off stored
as regular files in the app’s Documents directory.

Note: Core Data has an “Allows external storage” feature that is designed to
make this process completely transparent for the developer. In theory, you can
put data of any size into your entities and Core Data automatically decides
whether to put the data into the SQLite database or store it as an external file.

Unfortunately, this feature doesn’t work very well in practice. Last time I
checked it just had too many bugs to be useful. So until this part of Core Data
becomes rock solid, we’ll be doing it by hand.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 231

When the image picker gives you a UIImage object with a photo, that photo only
lives in the iPhone’s working memory.

The photo may also be stored as a file somewhere if the user picked it from the
photo library, but that’s not the case if she just snapped a new picture. Besides, the
user may have resized or cropped the photo.

So you have to save that UIImage to a file of your own if you want to keep it. The
photos from this app will be saved in the JPEG format.

You need a way to associate that JPEG file with your Location object. The obvious
solution is to store the filename in the Location object. You won’t store the entire
filename, just an ID, which is a positive number.

The image file itself will be named Photo-XXX.jpg, where XXX is the numeric ID.

➤ Open the Data Model editor. Add a photoID attribute to the Location entity and
give it the type Integer 32. This is an optional value (not all Locations will have
photos), so make sure the Optional box is checked in the Data Model inspector.

➤ Add a property for this new attribute to Location+CoreDataProperties.swift:

@NSManaged var photoID: NSNumber?

Remember that for an object that is managed by Core Data, you have to declare
the property as @NSManaged.

You may be wondering why you’re declaring the type of photoID as NSNumber and
not as Int (or more precisely Int32). Remember that Core Data is an Objective-C
framework, so you’re limited by the possibilities of that language. NSNumber is how
number objects are handled in Objective-C.

For various reasons you can’t represent an Int value as an optional in Objective-C,
so instead you’ll use the NSNumber class. Swift will automatically convert between
Int values and this NSNumber, so it’s no big deal.

You’ll now add some other properties to the Location object to make working with
the photo file a little easier.

➤ Add the hasPhoto computed property to Location+CoreDataClass.swift:

var hasPhoto: Bool {
 return photoID != nil
}

This determines whether the Location object has a photo associated with it or not.
Swift’s optionals make this easy.

➤ Also add the photoURL property:

var photoURL: URL {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 232

 assert(photoID != nil, "No photo ID set")
 let filename = "Photo-\(photoID!.intValue).jpg"
 return applicationDocumentsDirectory.appendingPathComponent(filename)
}

This property computes the full URL to the JPEG file for the photo. Recall that iOS
uses URLs to refer to files, even those saved on the local device instead of on the
internet.

You’ll save these JPEG files inside the app’s Documents directory. To get the URL to
that directory, it uses the global variable applicationDocumentsDirectory that you
added to Functions.swift earlier.

Notice the use of assert() to make sure the photoID is not nil. An assertion is a
special debugging tool that is used to check that your code always does something
valid. If not, the app will crash with a helpful error message. You’ll see more of this
later when we talk about finding bugs – and squashing them.

Assertions are a form of defensive programming. Most of the crashes you’ve seen
so far were actually caused by assertions in UIKit. They allow the app to crash in a
controlled manner. Without these assertions, programming mistakes could crash the
app at random moments, making it very hard to find out what went wrong.

If the app were to ask a Location object for its photoURL without having given it a
valid photoID earlier, the app will crash with the message “No photo ID set”. If so,
there is a bug in the code somewhere because this is not supposed to happen.
Internal consistency checks like this can be very useful.

Assertions are usually enabled only while you’re developing and testing your app
and disabled when you upload the final build of your app to the App Store. By then
there should be no more bugs in your app (or so you would hope!). It’s a good idea
to use assert() in strategic places to catch yourself making programming errors.

➤ Add the photoImage property:

var photoImage: UIImage? {
 return UIImage(contentsOfFile: photoURL.path)
}

This method returns a UIImage object by loading the image file. You’ll need this later
to show the photos for existing Location objects.

Note that this property has the optional type UIImage? – that’s because loading the
image may fail if the file is damaged or removed. Of course, that shouldn’t happen,
but no doubt you’ve heard of Murphy’s Law… It’s good to get into the habit of
defensive programming.

There is one more thing to add, the nextPhotoID() method. This is a class method,
meaning that you don’t need to have a Location instance to call it. You can call this
method anytime from anywhere.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 233

➤ Add the nextPhotoID() method:

class func nextPhotoID() -> Int {
 let userDefaults = UserDefaults.standard
 let currentID = userDefaults.integer(forKey: "PhotoID")
 userDefaults.set(currentID + 1, forKey: "PhotoID")
 userDefaults.synchronize()
 return currentID
}

You need to have some way to generate a unique ID for each Location object. All
NSManagedObjects have an objectID method, but that returns something unreadable
such as:

<x-coredata://C26CC559-959C-49F6-BEF0-F221D6F3F04A/Location/p1>

You can’t really use that in a filename. So instead, you’re going to put a simple
integer in UserDefaults and update it every time the app asks for a new ID. (This is
similar to what you did in the last tutorial to make ChecklistItem IDs for use with
local notifications.)

It may seem a little silly to use UserDefaults for this when you’re already using
Core Data as the data store, but with UserDefaults the nextPhotoID() method is
only five lines. You’ve seen how verbose the code is for fetching something from
Core Data and then saving it again. This is just as easy. (As an exercise, you could
try to implement these IDs using Core Data.)

That does it for Location. Now you have to save the photo in the Tag/Edit Location
screen and fill in the Location object’s photoID field. This happens in the Location
Details View Controller’s done() action.

➤ In LocationDetailsViewController.swift, in the done() method, add the
following in between where you set the properties of the Location object and where
you save the managed object context:

if let image = image {
 // 1
 if !location.hasPhoto {
 location.photoID = Location.nextPhotoID() as NSNumber
 }
 // 2
 if let data = UIImageJPEGRepresentation(image, 0.5) {
 // 3
 do {
 try data.write(to: location.photoURL, options: .atomic)
 } catch {
 print("Error writing file: \(error)")
 }
 }
}

This code is only performed if image is not nil, in other words, when the user has
picked a photo.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 234

1. You need to get a new ID and assign it to the Location’s photoID property, but
only if you’re adding a photo to a Location that didn’t already have one. If a
photo existed, you simply keep the same ID and overwrite the existing JPEG
file.

2. The UIImageJPEGRepresentation() function converts the UIImage into the JPEG
format and returns a Data object. Data is an object that represents a blob of
binary data, usually the contents of a file.

3. Here you save the Data object to the path given by the photoURL property. (Also
notice the use of the do-try-catch pattern again.)

➤ Run the app, tag a location, choose a photo, and press Done to exit the screen.
Now the photo you picked should be saved in the app’s Documents directory as a
regular JPEG file.

The photo is saved in the app’s Documents folder

Note: The first time you run the app after adding a new attribute to the data
model (photoID), the NSPersistentContainer performs a migration of the data
store behind the scenes to make sure the data store is in sync again with the
data model. If this for some reason doesn’t work for you, then remove the old
DataModel.sqlite file from the Library/Application Support folder and try again
(or simply reset the Simulator or remove the app from your test device).

➤ Tag another location and add a photo to it. Hmm… if you look into the app’s
Documents directory, this seems to have overwritten the previous photo.

Exercise. Try to debug this one on your own. What is going wrong here? This is a
tough one!

Answer: When you create a new Location object, its photoID property gets a default
value of 0. That means each Location initially has a photoID of 0. That should really
be nil, which means “no photo”.

➤ In LocationDetailsViewController.swift, add the following line near the top of
done():

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 235

@IBAction func done() {
 . . .

 if let temp = locationToEdit {
 . . .
 } else {
 hudView.text = "Tagged"
 location = Location(context: managedObjectContext)
 location.photoID = nil // add this
 }
 . . .

You now give new Location objects a photoID of nil so that the hasPhoto property
correctly recognizes that these Locations do not have a photo yet.

➤ Run the app again and tag multiple locations with photos. Verify that now each
photo is saved individually.

If you have Liya or another SQLite inspection tool, you can verify that each Location
object has been given a unique photoID value (in the ZPHOTOID column):

The Location objects with unique photoId values in Liya

Editing photos
So far all the changes you’ve made were for the Tag Location screen and adding
new locations. Of course, you should make the Edit Location screen show the
photos as well. The change to LocationDetailsViewController is quite simple.

➤ Change viewDidLoad() in LocationDetailsViewController.swift to:

override func viewDidLoad() {
 super.viewDidLoad()

 if let location = locationToEdit {
 title = "Edit Location"
 if location.hasPhoto {
 if let theImage = location.photoImage {
 show(image: theImage)
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 236

 }
 }
 . . .

If the Location that you’re editing has a photo, this calls show(image) to display it in
the photo cell.

Recall that the photoImage property returns an optional, UIImage?, so you use if let
to unwrap it. This is another bit of defensive programming.

Sure, if hasPhoto is true there should always be a valid image file present. But it’s
possible to imagine a scenario where there isn’t – the JPEG file could have been
erased or corrupted – even though that “should” never happen. (I’m sure you’ve
had your own share of computer gremlins eating important files.)

Note also what you don’t do here: the Location’s image is not assigned to the
image instance variable. If the user doesn’t change the photo, then you don’t need
to write it out to a file again – it’s already in that file and doing perfectly fine, thank
you.

If you were to put the photo in the image variable, then done() would overwrite that
existing file with the exact same data, which is a little silly. Therefore, the image
instance variable will only be set when the user picks a new photo.

➤ Run the app and take a peek at the existing locations from the Locations or Map
tabs. The Edit Location screen should now show the photos for the locations you’re
editing.

➤ Verify that you can also change the photo and that the JPEG file in the app’s
Documents directory gets overwritten when you press the Done button.

There’s another editing operation the user can perform on a location: deletion.
What happens to the image file when the location is deleted? At the moment
nothing. That photo stays forever in the app’s Documents directory.

Let’s do something about that and remove the photo file when the Location object
is deleted.

➤ First add a new method to Location+CoreDataClass.swift:

func removePhotoFile() {
 if hasPhoto {
 do {
 try FileManager.default.removeItem(at: photoURL)
 } catch {
 print("Error removing file: \(error)")
 }
 }
}

This is a code snippet that you can use to remove any file or folder. The FileManager
class has all kinds of useful methods for dealing with the file system.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 237

➤ Deleting locations happens in LocationsViewController.swift. Add the
following line to tableView(commit, forRowAt):

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {
 if editingStyle == .delete {
 let location = fetchedResultsController.object(at: indexPath)

 location.removePhotoFile() // add this line
 managedObjectContext.delete(location)
 . . .

The new line calls removePhotoFile() on the Location object just before it is deleted
from the Core Data context.

➤ Try it out. Add a new location and give it a photo. You should see the JPEG file in
the Documents directory.

From the Locations screen, delete the location you just added and look in the
Documents directory to make sure the JPEG file truly is a goner.

Thumbnails of the photos
Now that locations can have photos, it’s a good idea to show thumbnails for these
photos in the Locations tab. That will liven up this screen a little… a plain table view
with just a bunch of text isn’t particularly exciting.

➤ Go to the storyboard editor. In the prototype cell on the Locations View
Controller, move the two labels to X = 82. Make them 238 points wide.

➤ Drag a new Image View into the cell. Place it at the top-left corner of the cell.
Give it the following position: X = 15, Y = 2. Make it 52 by 52 points big.

The table view cell has an image view

➤ Connect the image view to a new UIImageView outlet on LocationCell, named
photoImageView.

Exercise. Make this connection with the Assistant editor. Tip: you should connect
the image view to the cell, not to the view controller.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 238

Now you can put any image into the table view cell simply by placing it inside the
image view from LocationCell’s photoImageView property.

➤ Go to LocationCell.swift and add the following method:

func thumbnail(for location: Location) -> UIImage {
 if location.hasPhoto, let image = location.photoImage {
 return image
 }
 return UIImage()
}

This returns either the image from the Location or an empty placeholder image.

You should read this if-statement as, “if the location has a photo, and I can unwrap
location.photoImage, then return the unwrapped image.”

You can also write this as two nested if-statements:

if location.hasPhoto {
 if let image = location.photoImage {
 return image
 }
}

but because this is such a common thing to do, Swift lets you combine these two
things inside a single if.

You have also seen that && (“logical and”) is used to combine two conditions, but
you cannot write it like this:

if location.hasPhoto && let image = location.photoImage

The && only works if both conditions are booleans, but here you’re unwrapping an
optional as well. In that case you must combine the two conditions with a comma.

➤ Call this new method from the bottom of configure(for):

photoImageView.image = thumbnail(for: location)

➤ Try it out. The Locations tab should now look something like this:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 239

Images in the Locations table view

You’ve got thumbnails, all right!

But look closely and you’ll see that the images are a little squashed again. That’s
because you didn’t set the Aspect Fit content mode on the image view – but there’s
a bigger problem here. Literally.

These photos are potentially huge (2592 by 1936 pixels or more), even though the
image view is only 52 pixels square. To make them fit, the image view needs to
scale down the images by a lot (which is also why they look a little “gritty”).

What if you have tens or even hundreds of locations? That is going to require a ton
of memory and processing speed just to display these tiny thumbnails. A better
solution is to scale down the images before you put them into the table view cell.

And what better way to do that than to use an extension?

Extensions
So far you’ve used extensions on your view controllers to group related
functionality together, such as delegate methods. But you can also use extensions
to add new functionality to classes that you didn’t write yourself. That includes
classes from the iOS frameworks, such as UIImage.

If you ever catch yourself thinking, “Gee, I wish object X had such-or-so method”
then you can probably give it that method by making an extension.

Suppose you want String to have a method for adding random words to the string.
You could add the addRandomWord() method to String as follows.

First you create a new source file, for example String+RandomWord.swift. It
would look like this:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 240

import Foundation

extension String {
 func addRandomWord() -> String {
 let value = arc4random_uniform(3)

 let word: String
 switch value {
 case 0:
 word = "rabbit"
 case 1:
 word = "banana"
 case 2:
 word = "boat"
 default:
 word = ""
 }

 return self + word
 }
}

Anywhere in your code you can now call addRandomWord() on any String value:

let someString = "Hello, "
let result = someString.addRandomWord()
print("The queen says: \(result)")

Extensions are pretty cool because they make it simple to add new functionality
into an existing class. In other programming languages you would have to make a
subclass and put your new methods in there, but extensions are often a cleaner
solution.

Besides new methods you can also add new computed properties, but you can’t add
regular instance variables. You can also use extensions on types that don’t even
allow inheritance, such as structs and enums.

You are going to add an extension to UIImage that lets you resize the image. You’ll
use it as follows:

return image.resizedImage(withBounds: CGSize(width: 52, height: 52))

The resizedImage(withBounds) method is new. The “bounds” is the size of the
rectangle (or square in this case) that encloses the image. If the image itself is not
square, then the resized image may actually be smaller than the bounds.

Let’s write the extension.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 241

➤ Add a new file to the project and choose the Swift File template. Name the file
UIImage+Resize.swift.

➤ Replace the contents of this new file with:

import UIKit

extension UIImage {
 func resizedImage(withBounds bounds: CGSize) -> UIImage {
 let horizontalRatio = bounds.width / size.width
 let verticalRatio = bounds.height / size.height
 let ratio = min(horizontalRatio, verticalRatio)
 let newSize = CGSize(width: size.width * ratio,
 height: size.height * ratio)

 UIGraphicsBeginImageContextWithOptions(newSize, true, 0)
 draw(in: CGRect(origin: CGPoint.zero, size: newSize))
 let newImage = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()

 return newImage!
 }
}

This method first calculates how big the image can be in order to fit inside the
bounds rectangle. It uses the “aspect fit” approach to keep the aspect ratio intact.

Then it creates a new image context and draws the image into that. We haven’t
really dealt with graphics contexts before, but they are an important concept in
Core Graphics (it has nothing to do with the managed object context from Core
Data, even though they’re both called “context”).

Lets put this extension in action.

➤ Switch to LocationCell.swift. Update the thumbnail(for) method:

func thumbnail(for location: Location) -> UIImage {
 if location.hasPhoto, let image = location.photoImage {
 return image.resizedImage(withBounds: CGSize(width: 52, height: 52))
 }
 return UIImage()
}

➤ Run the app. The thumbnails look like this:

The photos are shrunk to the size of the thumbnails

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 242

The images are a little blurry and they still seem to be stretched out. This is
because the content mode on the image view is still wrong.

Previously it shrunk the big photos to 52 by 52 points, but now the thumbnails may
actually be smaller than 52 points (unless the photo was perfectly square) and they
get scaled up to fill the entire image view rectangle.

➤ Go to the storyboard and set the Content Mode of the image view to Center.

➤ Run the app again and now the photos look A-OK:

The thumbnails now have the correct aspect ratio

Exercise. Change the resizing function in the UIImage extension to resize using the
“Aspect Fill” rules instead of the “Aspect Fit” rules. Both keep the aspect ratio intact
but Aspect Fit keeps the entire image visible while Aspect Fill fills up the entire
rectangle and may cut off parts of the sides. In other words, Aspect Fit scales to the
longest side but Aspect Fill scales to the shortest side.

Aspect Fit vs. Aspect Fill

Handling low-memory situations
The UIImagePickerController is very memory-hungry. Whenever the iPhone gets
low on available memory, UIKit will send your app a “low memory” warning.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 243

When that happens you should reclaim as much memory as possible, or iOS might
be forced to terminate the app. And that’s something to avoid – users generally
don’t like apps that suddenly quit on them!

Chances are that your app gets one or more low-memory warnings while the image
picker is open, especially when you run it on a device that has other apps
suspended in the background. Photos take up a lot of space – especially when your
camera is 5 or more megapixels – so it’s no wonder that memory fills up quickly.

You can respond to memory warnings by overriding the didReceiveMemoryWarning()
method in your view controllers to free up any memory you no longer need. This is
often done for things that can easily be recalculated or recreated later, such as
thumbnails or other cached objects.

UIKit is already pretty smart about low memory situations and it will do everything
it can to release memory, including the thumbnail images of rows that are not (or
no longer) visible in your table view.

For MyLocations there’s not much that you need to do to free up additional memory,
you can rely on UIKit to automatically take care of it. But in your own apps you
might want to take extra measures, depending on the sort of cached data that you
have.

By the way, on the Simulator you can trigger a low memory warning using the
Hardware → Simulate Memory Warning menu item. It’s smart to test your apps
under low memory conditions, because that’s what they are going to encounter out
in the wild once they’re running on real users’ devices.

Great, that concludes all the functionality for this app. Now it’s time to fine-tune its
looks.

You can find the project files for the app up to this point under 06 – Photo Picker
in the tutorial’s Source Code folder.

Making the app look good
Apps with appealing visuals sell better than ugly ones. Usually I don’t wait with the

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 244

special sauce until the end of a project, but for these tutorials it’s clearer if you first
get all the functionality in before you improve the looks. Now that the app works as
it should, let’s make it look good!

You’re going to go from this,

to this:

The main screen gets the biggest makeover, but you’ll also tweak the others a little.

Converting placemarks to strings
Let’s begin by improving the code. I’m not really happy with the way the reverse
geocoded street address gets converted from a CLPlacemark object into a string. It
works but the code is unwieldy and repetitive.

There are three places where this happens:

• CurrentLocationViewController, the main screen

• LocationDetailsViewController, the Tag/Edit Location screen

• LocationsViewController, the list of saved locations

Let’s start with the main screen. CurrentLocationViewController.swift has a
method named string(from) where this conversion happens. It currently does this:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 245

func string(from placemark: CLPlacemark) -> String {
 var line1 = ""

 if let s = placemark.subThoroughfare {
 line1 += s + " "
 }
 if let s = placemark.thoroughfare {
 line1 += s
 }
 . . .

It’s supposed to return a string that looks like:

subThoroughfare thoroughfare
locality administrativeArea postalCode

This string goes into a UILabel that has room for two lines, so you use the \n
character sequence to create a line-break between the thoroughfare and locality.

The problem is that any of these properties may be nil, so the code has to be
smart enough to skip the empty ones – that’s what all the if lets are for.

What I don’t like is that there’s a lot of repetition going on in this method. You can
refactor this.

Exercise. Try to make this method simpler by moving the common logic into a new
method.

Answer: Here is how I did it.

➤ Add the following method:

func add(text: String?, toLine line: String,
 separatedBy separator: String) -> String {
 var result = line
 if let text = text {
 if !line.isEmpty {
 result += separator
 }
 result += text
 }
 return result
}

➤ Now you can rewrite string(from) as follows:

func string(from placemark: CLPlacemark) -> String {
 var line1 = ""
 line1 = add(text: placemark.subThoroughfare, toLine: line1,
 separatedBy: "")
 line1 = add(text: placemark.thoroughfare, toLine: line1,
 separatedBy: " ")

 var line2 = ""

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 246

 line2 = add(text: placemark.locality, toLine: line2, separatedBy: "")
 line2 = add(text: placemark.administrativeArea, toLine: line2,
 separatedBy: " ")
 line2 = add(text: placemark.postalCode, toLine: line2,
 separatedBy: " ")

 return add(text: line2, toLine: line1, separatedBy: "\n")
}

That already looks a bit cleaner. The logic that decides whether or not to add a
CLPlacemark property to the string now lives inside add(text, toLine, separatedBy)
so you no longer need all those if let statements. You also use add(text, …) to
add line2 to line1 with a newline character in between.

➤ Run the app to see if it works.

That settles CurrentLocationViewController. What about the other two controllers?
Well, they probably need to do something very similar.

You could either copy the add(text, toLine, separatedBy) method into the other
two view controllers, which causes unwanted code duplication, or… you can put it
into an extension on String. I bet you can guess which one we’re going to pick.

➤ Add a new file to the project using the Swift File template. Name it String
+AddText.

➤ Replace the contents of String+AddText.swift with:

extension String {
 mutating func add(text: String?, separatedBy separator: String) {
 if let text = text {
 if !isEmpty {
 self += separator
 }
 self += text
 }
 }
}

You’ve simply moved the method into this new extension.

The only difference is that the toLine: parameter is no longer necessary because
this method now always modifies the string object that it belongs to. It adds the
text and the separator to self.

Mutating

Notice the mutating keyword. You haven’t seen this before. Sorry, it doesn’t
have anything to do with X-men – programming is certainly fun but it isn’t that
exciting.

When a method changes the value of a struct, it must be marked as mutating.
Recall that String is a struct, which is a value type, and therefore cannot be

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 247

modified when declared with let.

The mutating keyword tells Swift that the add(text, separatedBy) method can
only be used on strings that are made with var, but not on strings made with
let.

If you try to modify self in a method on a struct that is not marked as
mutating, Swift considers this an error.

You don’t need to use the mutating keyword on methods inside a class
because classes are reference types and can always be mutated, even if they
are declared with let.

➤ Back in CurrentLocationViewController.swift, change string(from) to the
following:

func string(from placemark: CLPlacemark) -> String {
 var line1 = ""
 line1.add(text: placemark.subThoroughfare, separatedBy: "")
 line1.add(text: placemark.thoroughfare, separatedBy: " ")

 var line2 = ""
 line2.add(text: placemark.locality, separatedBy: "")
 line2.add(text: placemark.administrativeArea, separatedBy: " ")
 line2.add(text: placemark.postalCode, separatedBy: " ")

 line1.add(text: line2, separatedBy: "\n")
 return line1
}

➤ Remove the old add(text, toLine, separatedBy) method; it’s no longer used for
anything.

There’s still a small thing you can do to improve the new add(text, separatedBy)
method from the String extension.

➤ In String+AddText.swift, change the line that defines the method to:

mutating func add(text: String?, separatedBy separator: String = "") {

You’ve added the = "" bit behind the separator parameter. This is known as a
default parameter value. If a parameter has a default value, it allows callers of
this method to leave out that parameter.

When you now write,

line1.add(text: placemark.subThoroughfare)

it does the same thing as:

line1.add(text: placemark.subThoroughfare, separatedBy: "")

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 248

In this case the default value for separator is the empty string. If the separatedBy
parameter is left out, separator will be "".

➤ Make these changes in CurrentLocationViewController.swift:

func string(from placemark: CLPlacemark) -> String {

 line1.add(text: placemark.subThoroughfare)
 . . .

 line2.add(text: placemark.locality)
 . . .

Where the separator was the empty string, you leave out the separatedBy: "" part
of the method call. Now you have a pretty clean solution that you can re-use in the
other two view controllers.

➤ In LocationDetailsViewController.swift, change the string(from) method to:

func string(from placemark: CLPlacemark) -> String {
 var line = ""
 line.add(text: placemark.subThoroughfare)
 line.add(text: placemark.thoroughfare, separatedBy: " ")
 line.add(text: placemark.locality, separatedBy: ", ")
 line.add(text: placemark.administrativeArea, separatedBy: ", ")
 line.add(text: placemark.postalCode, separatedBy: " ")
 line.add(text: placemark.country, separatedBy: ", ")
 return line
}

It’s slightly different from how the main screen does it.

Here you make a string that looks like: "subThoroughfare thoroughfare, locality,
administrativeArea postalCode, country".

There are no \n newline characters and some of the elements are separated by
commas instead of just spaces. Newlines aren’t necessary here because the label
will word-wrap.

The final place where placemarks are shown is LocationsViewController. However,
this class doesn’t have a string(from) method. Instead, the logic for formatting the
address lives in LocationCell.

➤ Go to LocationCell.swift. Change the relevant part of configure(for):

func configure(for location: Location) {
 . . .
 if let placemark = location.placemark {
 var text = ""
 text.add(text: placemark.subThoroughfare)
 text.add(text: placemark.thoroughfare, separatedBy: " ")
 text.add(text: placemark.locality, separatedBy: ", ")
 addressLabel.text = text
 } else {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 249

 . . .

You only show the street and the city so the conversion is simpler. The string will be
"subThoroughfare thoroughfare, locality".

And that’s it for placemarks.

Back to black
Right now the app looks like a typical standard iOS 10 app: lots of white, gray tab
bar, blue tint color. Let’s go for a radically different look and paint the whole thing
black.

➤ Open the storyboard and go to the Current Location View Controller. Select
the top-level view and change its Background Color to Black Color.

➤ Select all the labels (probably easiest from the outline pane since they are now
invisible) and set their Color to White Color.

➤ Change the Font of the (Latitude/Longitude goes here) labels to System
Bold 17.

➤ Select the two buttons and change their Font to System Bold 20, to make them
slightly larger. You may need to resize their frames to make the text fit (remember,
⌘= is the magic keyboard shortcut).

➤ In the File inspector, change Global Tint to the color Red: 255, Green: 238,
Blue: 136. That makes the buttons and other interactive elements yellow, which
stands out nicely against the black background.

➤ Select the Get My Location button and change its Text Color to White Color.
This provides some contrast between the two buttons.

The storyboard should look like this:

The new yellow-on-black design

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 250

When you run the app, there are two obvious problems:

1. the status bar text has become invisible (it is black text on a black background)

2. the grey tab bar sticks out like a sore thumb (also, the yellow tint color doesn’t
get applied to the tab bar icons)

To fix this, you can use the UIAppearance API. This is a set of methods that lets you
customize the look of the standard UIKit controls.

You can customize on a per-control basis, or you can use the “appearance proxy” to
change the look of all of the controls of a particular type at once. That’s what you’re
going to do here.

➤ Add the following method to AppDelegate.swift:

func customizeAppearance() {
 UINavigationBar.appearance().barTintColor = UIColor.black
 UINavigationBar.appearance().titleTextAttributes = [
 NSForegroundColorAttributeName: UIColor.white]

 UITabBar.appearance().barTintColor = UIColor.black

 let tintColor = UIColor(red: 255/255.0, green: 238/255.0,
 blue: 136/255.0, alpha: 1.0)
 UITabBar.appearance().tintColor = tintColor
}

This changes the “bar tint” or background color of all navigation bars and tab bars
in the app to black in one fell swoop. It also sets the color of the navigation bar’s
title label to white and applies the tint color to the tab bar.

➤ Call this method from the top of application(didFinishLaunchingWithOptions):

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions . . .) -> Bool {

 customizeAppearance()
 . . .
}

This looks better already.

The tab bar is now nearly black and has yellow icons

On the Locations and Map screens you can clearly see that the bars now have a

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 251

dark tint:

The navigation and tab bars appear in a dark color

Keep in mind that the bar tint is not the true background color. The bars are still
translucent, which is why they appear as a medium gray rather than pure black.

Tab bar icons
The icons in the tab bar could also do with some improvement. The Xcode Tabbed
Application template put a bunch of cruft in the app that you’re no longer using, so
let’s get rid of it.

➤ Remove the SecondViewController.swift file from the project.

➤ Remove the first and second images from the asset catalog (Assets.xcassets).

Tab bar images should be basic grayscale images of up to 30 × 30 points (that is 60
× 60 pixels for Retina and 90 × 90 pixels for Retina HD). You don’t have to tint the
images; iOS will automatically draw them in the proper color.

➤ The resources for this tutorial include an Images directory. Add the files from
this folder to the asset catalog.

➤ Go to the storyboard. Select the Tab Bar Item of the Current Location screen.
In the Attributes inspector, under Image choose Tag. This is the name of one of
the images you’ve just added.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 252

Choosing an image for a Tab Bar Item

➤ For the Tab Bar Item from the navigation controller attached to the Locations
screen, choose the Locations image.

➤ For the Tab Bar Item from the Map View Controller, choose the Map image.

Now the tab bar looks a lot more appealing:

The tab bar with proper icons

The status bar
The status bar is currently invisible on the Tag screen and appears as black text on
dark gray on the other two screens. It will look better if the status bar text is white
instead.

To do this, you need to override the preferredStatusBarStyle property in your view
controllers and make it return the value .lightContent.

For some reason that won’t work for view controllers embedded in a Navigation
Controller, such as the Locations tab and the Tag/Edit Location screens.

The simplest way to make the status bar white for all your view controllers in the
entire app is to replace the UITabBarController with your own subclass.

➤ Add a new source file to the project and name it MyTabBarController.

➤ Replace the contents of MyTabBarController.swift with:

import UIKit

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 253

class MyTabBarController: UITabBarController {
 override var preferredStatusBarStyle: UIStatusBarStyle {
 return .lightContent
 }

 override var childViewControllerForStatusBarStyle: UIViewController? {
 return nil
 }
}

By returning nil from childViewControllerForStatusBarStyle, the tab bar controller
will look at its own preferredStatusBarStyle property instead of those from the
other view controllers.

➤ In the storyboard, select the Tab Bar Controller and in the Identity inspector
change its Class to MyTabBarController. This tells the storyboard that it should
now create an instance of your subclass when the app starts up.

That’s right, you can replace standard UIKit components with your own subclass!

Subclassing lets you change what the built-in UIKit objects do – that’s the power of
object-oriented programming – although you probably shouldn’t get carried away
and alter their behavior too much. Before you know it, your app ends up with an
identity crisis!

MyTabBarController still does everything that the standard UITabBarController
does. You only overrode preferredStatusBarStyle to change the status bar color.

You can plug this MyTabBarController class into any app that uses a tab bar
controller, and from then on all its view controllers have a white status bar.

You also need to make a subclass for the Navigation Controller that embeds the
Tag/Edit Location screen, because that is presented modally on top of the other
screens and is therefore not part of the Tab Bar Controller hierarchy.

➤ Add another new file to the project and name it MyNavigationController.

➤ Replace the contents of MyNavigationController.swift with:

import UIKit

class MyNavigationController: UINavigationController {
 override var preferredStatusBarStyle: UIStatusBarStyle {
 return .lightContent
 }
}

➤ In the storyboard, select the Navigation Controllers and change their Class to
MyNavigationController.

Now the status bar is white everywhere:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 254

The status bar is visible again

Well, almost everywhere… When you open the photo picker, the status bar fades to
black again. You can probably guess what the solution is…

➤ Add a new file to the project and name it MyImagePickerController. (Getting a
sense of déjà vu?)

➤ Replace the contents of MyImagePickerController.swift with:

import UIKit

class MyImagePickerController: UIImagePickerController {
 override var preferredStatusBarStyle: UIStatusBarStyle {
 return .lightContent
 }
}

Now instead of instantiating the standard UIImagePickerController to pick a photo,
you’ll use this new subclass instead.

➤ Go to LocationDetailsViewController.swift. In takePhotoWithCamera() and
choosePhotoFromLibrary(), change the line that creates the image picker to:

let imagePicker = MyImagePickerController()

This is allowed because MyImagePickerController is a subclass of the standard
UIImagePickerController, so it has the same properties and methods. As far as
UIKit is concerned, the two are interchangeable. So you can use your subclass
anywhere you’d use UIImagePickerController.

While you’re at it, the photo picker still uses the standard blue tint color. That
makes its navigation bar buttons hard to read (blue text on a dark gray navigation
bar). The fix is simple: set the tint color on the Image Picker Controller just before
you present it.

➤ Also add the following line to the two methods:

imagePicker.view.tintColor = view.tintColor

Now the Cancel button appears in yellow instead of blue.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 255

The photo picker with the new colors

There is one more thing to change. When the app starts up, iOS looks in the
Info.plist file to determine whether it should show a status bar while the app
launches, and if so, what color that status bar should be.

Right now, it’s set to Default, which is the black status bar.

➤ Just to be thorough, go to the Project Settings screen. In the General tab,
under Deployment Info is a Status Bar Style option. Change this to Light.

Changing the status bar style for app startup

And now the status bar really is white everywhere!

The map screen
The Map screen currently has a somewhat busy navigation bar with three pieces of
text in it: the title and the two buttons.

The bar button items have text labels

The design advice that Apple gives is to prefer text to icons because icons tend to
be harder to understand. The disadvantage of using text is that it makes your

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 256

navigation bar more crowded.

There are two possible solutions:

1. Remove the title. If the purpose of the screen is obvious, which it is in this case,
then the title “Map” is superfluous. You might as well remove it.

2. Keep the title but replace the button labels with icons.

For this app you’ll choose the second option.

➤ Go to the Map scene in the storyboard and select the Locations bar button item.
In the Attributes inspector, under Image choose Pin. This will remove the text
from the button.

➤ For the User bar button item, choose the User image.

The Map screen now looks like this:

Map screen with the button icons

Notice that the dot for the user’s current location is drawn in the yellow tint color (it
was a blue dot before).

The (i) button on the map annotation also appears in yellow, making it hard to see
on the white callout. Fortunately, you can override the tint color on a per-view
basis. There’s no rule that says the tint color has to be the same everywhere!

➤ In MapViewController.swift, in the method mapView(viewFor), add this below
the line that sets pinView.pinTintColor:

pinView.tintColor = UIColor(white: 0.0, alpha: 0.5)

This sets the annotation’s tint color to half-opaque black:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 257

The callout button is now easier to see

Fixing up the table views
The app is starting to shape up but there are still some details to take care of. The
table views, for example, are still very white.

Unfortunately, what UIAppearance can do for table views is very limited, so you’ll
have to customize each of the table views individually.

➤ Add the following lines to viewDidLoad() in LocationsViewController.swift:

tableView.backgroundColor = UIColor.black
tableView.separatorColor = UIColor(white: 1.0, alpha: 0.2)
tableView.indicatorStyle = .white

This makes the table view itself black but does not alter the cells.

➤ In LocationCell.swift, implement the awakeFromNib() method to change the
appearance of the actual cells:

override func awakeFromNib() {
 super.awakeFromNib()
 backgroundColor = UIColor.black
 descriptionLabel.textColor = UIColor.white
 descriptionLabel.highlightedTextColor = descriptionLabel.textColor
 addressLabel.textColor = UIColor(white: 1.0, alpha: 0.4)
 addressLabel.highlightedTextColor = addressLabel.textColor
}

Every object that comes from a storyboard has the awakeFromNib() method. This
method is invoked when UIKit loads the object from the storyboard. It’s the ideal
place to customize its looks.

Note: In case you’re wondering why it’s not called awakeFromStoryboard(), this
is simply for historical reasons when nibs were all we had. A nib (or XIB) is like
a storyboard but it can only hold the design of a single screen. Even though
they are not as popular as they once were, you can still use nibs. In the next
tutorial you’ll see an example of that.

➤ Run the app. That’s starting to look pretty good already:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 258

The table view cells are now white-on-black

There is a small issue. When you tap a cell it still lights up in a bright color, which is
a little extreme. It would look better if the selection color was more subdued.

There is no “selectionColor” property on UITableViewCell, but you can give it a
different view to display when it is selected.

➤ Add the following to the bottom of awakeFromNib():

let selectionView = UIView(frame: CGRect.zero)
selectionView.backgroundColor = UIColor(white: 1.0, alpha: 0.2)
selectedBackgroundView = selectionView

This creates a new UIView filled with a dark gray color. This new view is placed on
top of the cell’s background when the user taps on the cell. It looks like this:

The selected cell (The Harbor) has a subtly different background color

The section headers are also on the heavy side. There is no easy way to customize
the existing headers but you can replace them with a view of your own.

➤ Go to LocationsViewController.swift and add the following method:

// MARK: - UITableViewDelegate

override func tableView(_ tableView: UITableView,
 viewForHeaderInSection section: Int) -> UIView? {

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 259

 let labelRect = CGRect(x: 15, y: tableView.sectionHeaderHeight - 14,
 width: 300, height: 14)
 let label = UILabel(frame: labelRect)
 label.font = UIFont.boldSystemFont(ofSize: 11)

 label.text = tableView.dataSource!.tableView!(
 tableView, titleForHeaderInSection: section)

 label.textColor = UIColor(white: 1.0, alpha: 0.4)
 label.backgroundColor = UIColor.clear

 let separatorRect = CGRect(x: 15,
 y: tableView.sectionHeaderHeight - 0.5,
 width: tableView.bounds.size.width - 15,
 height: 0.5)
 let separator = UIView(frame: separatorRect)
 separator.backgroundColor = tableView.separatorColor

 let viewRect = CGRect(x: 0, y: 0, width: tableView.bounds.size.width,
 height: tableView.sectionHeaderHeight)
 let view = UIView(frame: viewRect)
 view.backgroundColor = UIColor(white: 0, alpha: 0.85)
 view.addSubview(label)
 view.addSubview(separator)
 return view
}

This is a UITableView delegate method. It gets called once for each section in the
table view. Here you create a label for the section name, a 1-pixel high view that
functions as a separator line, and a container view to hold these two subviews.

It looks like this:

The section headers now draw much less attention to themselves

If the section header has now completely disappeared on you, then add the
following line to viewDidLoad():

tableView.sectionHeaderHeight = 28

This fixes a bug in Xcode that sets the section header height to -1 if you leave it at
its default value of 28 in Interface Builder.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 260

Note: Did you notice anything special about the following line?
label.text = tableView.dataSource!.tableView!(tableView,
titleForHeaderInSection: section)

This asks the table view’s data source for the text to put in the header. The
dataSource property is an optional so you’re using ! to unwrap it. But that’s
not the only ! in this line…

You’re calling the tableView(titleForHeaderInSection) method on the table
view’s data source, which is of course the LocationsViewController itself.

But this method is an optional method – not all data sources need to
implement it. Because of that you have to unwrap the method with the
exclamation mark in order to use it. Unwrapping methods… does it get any
crazier than that?

By the way, you can also write this as:
label.text = self.tableView(tableView, titleForHeaderInSection: section)

Here you use self to directly access that method on LocationsViewController.
Both ways achieve exactly the same thing, since the view controller happens
to be the table view’s data source.

Another small improvement you can make is to always put the section headers in
uppercase.

➤ Change the tableView(titleForHeaderInSection) data source method to:

override func tableView(_ tableView: UITableView,
 titleForHeaderInSection section: Int) -> String? {
 let sectionInfo = fetchedResultsController.sections![section]
 return sectionInfo.name.uppercased()
}

Now the section headers look even better:

The section header text is in uppercase

Currently if a location does not have a photo, there is a black gap where the

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 261

thumbnail is supposed to be. That doesn’t look very professional. It’s better to show
a placeholder image. You already added one to the asset catalog when you
imported the Images folder.

➤ In LocationCell.swift’s thumbnail(for), replace the line that returns an empty
UIImage with:

return UIImage(named: "No Photo")!

Recall that UIImage(named) is a failable initializer, so it returns an optional. Don’t
forget the exclamation point to unwrap the optional.

Now locations without photos appear like so:

A location using the placeholder image

That makes it a lot clearer to the user that the photo is missing. (As opposed to,
say, being a photo of a black hole.)

The placeholder image is round. That’s the fashion for thumbnail images on iOS
these days, and it’s pretty easy to make the other thumbnails rounded too.

➤ Still in LocationCell.swift, add the following lines to the bottom of
awakeFromNib():

photoImageView.layer.cornerRadius = photoImageView.bounds.size.width / 2
photoImageView.clipsToBounds = true
separatorInset = UIEdgeInsets(top: 0, left: 82, bottom: 0, right: 0)

This gives the image view rounded corners with a radius that is equal to half the
width of the image, which makes it a perfect circle.

The clipsToBounds setting makes sure that the image view respects these rounded
corners and does not draw outside them.

The separatorInset moves the separator lines between the cells a bit to the right so
there are no lines between the thumbnail images.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 262

The thumbnails live inside little circles

Note: The rounded thumbnails don’t look very good if the original photo isn’t
square. You may want to change the Mode of the image view back to Aspect
Fill or Scale to Fill so that the thumbnail always fills up the entire image view.

The labels in this screen have one final problem: they are not big enough on the
iPhone 6s, 7, or Plus. Remember that the screens of these models are wider than
the 320 points you’ve been designing for (375 and 414 points, respectively).

The obvious solution is to set autoresizing on the labels so they automatically
resize.

➤ Change the autoresizing settings of the Description and Address labels to:

The autoresizing settings for the labels

Tip: To verify that the labels now take advantage of all the available screen space
on the larger iPhones, give them a non-transparent background color. I like bright
purple!

➤ Add these lines to awakeFromNib() and run the app:

descriptionLabel.backgroundColor = UIColor.purple
addressLabel.backgroundColor = UIColor.purple

This is what it looks like on the iPhone 7 Plus:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 263

The labels resize to fit the iPhone 7

When you’re done testing, don’t forget to remove the lines that set the background
color. It’s useful as a debugging tool but not particularly pretty to look at.

There are two other table views in the app and they get a similar treatment.

➤ Add these lines to viewDidLoad() in LocationDetailsViewController.swift:

tableView.backgroundColor = UIColor.black
tableView.separatorColor = UIColor(white: 1.0, alpha: 0.2)
tableView.indicatorStyle = .white

descriptionTextView.textColor = UIColor.white
descriptionTextView.backgroundColor = UIColor.black

addPhotoLabel.textColor = UIColor.white
addPhotoLabel.highlightedTextColor = addPhotoLabel.textColor

addressLabel.textColor = UIColor(white: 1.0, alpha: 0.4)
addressLabel.highlightedTextColor = addressLabel.textColor

This is similar to what you did before. It changes the colors of the table view (but
not the cells) and some of the other controls.

This table view controller has static cells so there is no “cellForRowAt” data source
method that you can use to change the colors of the cells and their labels.

However, the table view delegate has a handy method that comes in useful here.

➤ Add the following method:

override func tableView(_ tableView: UITableView,
 willDisplay cell: UITableViewCell, forRowAt indexPath: IndexPath) {
 cell.backgroundColor = UIColor.black

 if let textLabel = cell.textLabel {
 textLabel.textColor = UIColor.white
 textLabel.highlightedTextColor = textLabel.textColor
 }

 if let detailLabel = cell.detailTextLabel {
 detailLabel.textColor = UIColor(white: 1.0, alpha: 0.4)
 detailLabel.highlightedTextColor = detailLabel.textColor
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 264

 let selectionView = UIView(frame: CGRect.zero)
 selectionView.backgroundColor = UIColor(white: 1.0, alpha: 0.2)
 cell.selectedBackgroundView = selectionView
}

The “willDisplay” delegate method is called just before a cell becomes visible. Here
you can do some last-minute customizations on the cell and its contents.

You’re using if let to unwrap cell.textLabel and cell.detailTextLabel because
they are optionals. Not all cell types come with these built-in labels, in which case
these properties are nil.

If you run the app now and tag a new location, you’ll see that the label that used to
say “Address” is not visible (try it out). That’s because this cell does not use one of
the built-in cell types so it does not have anything connected to the textLabel and
detailTextLabel properties.

You could make a new outlet for this label but you can also do it as follows:

➤ Set the Tag of the “Address” label to 100 in the storyboard.

➤ Add these lines to tableView(willDisplay, forRowAt):

if indexPath.row == 2 {
 let addressLabel = cell.viewWithTag(100) as! UILabel
 addressLabel.textColor = UIColor.white
 addressLabel.highlightedTextColor = addressLabel.textColor
}

The Tag Location screen now looks like this:

The Tag Location screen with styling applied

The final table view is the category picker.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 265

➤ Add this to viewDidLoad() in CategoryPickerViewController.swift:

tableView.backgroundColor = UIColor.black
tableView.separatorColor = UIColor(white: 1.0, alpha: 0.2)
tableView.indicatorStyle = .white

➤ And give this class a “willDisplay” method too:

override func tableView(_ tableView: UITableView,
 willDisplay cell: UITableViewCell, forRowAt indexPath: IndexPath) {
 cell.backgroundColor = UIColor.black

 if let textLabel = cell.textLabel {
 textLabel.textColor = UIColor.white
 textLabel.highlightedTextColor = textLabel.textColor
 }

 let selectionView = UIView(frame: CGRect.zero)
 selectionView.backgroundColor = UIColor(white: 1.0, alpha: 0.2)
 cell.selectedBackgroundView = selectionView
}

Now the category picker is dressed in black as well. It’s a bit of work to change the
visuals of all these table views by hand, but it’s worth it.

The category picker is lookin’ sharp

Polishing the main screen
I’m pretty happy with all the other screens but the main screen needs a bit more
work to be presentable.

Here’s what you’ll do:

• Show a logo when the app starts up. Normally such splash screens are bad for
the user experience, but here I think we can get away with it.

• Make the logo disappear with an animation when the user taps Get My Location.

• While the app is fetching the coordinates, show an animated activity spinner to
make it even clearer to the user that something is going on.

• Hide the Latitude: and Longitude: labels until the app has found coordinates.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 266

You will first hide the text labels from the screen until the app actually has some
coordinates to display. The only label that will be visible until then is the one on the
top and it will say “Searching...” or give some kind of error message.

In order to do this, you must have outlets for these two labels.

➤ Add the following properties to CurrentLocationViewController.swift:

@IBOutlet weak var latitudeTextLabel: UILabel!
@IBOutlet weak var longitudeTextLabel: UILabel!

You’ll put the logic for updating these labels into a single place, the updateLabels()
method, so that hiding and showing them is pretty straightforward.

➤ Change the updateLabels() method in CurrentLocationViewController.swift:

func updateLabels() {
 if let location = location {
 . . .

 latitudeTextLabel.isHidden = false
 longitudeTextLabel.isHidden = false
 } else {
 . . .

 latitudeTextLabel.isHidden = true
 longitudeTextLabel.isHidden = true
 }
}

➤ Connect the Latitude: and Longitude: labels in the storyboard editor to the
latitudeTextLabel and longitudeTextLabel outlets.

➤ Run the app and verify that the Latitude: and Longitude: labels only appear
when you have obtained GPS coordinates.

The first impression
The main screen looks decent and is completely functional but it could do with more
pizzazz. It lacks the “Wow!” factor. You want to impress users the first time they
start your app, in order to keep them coming back. To pull this off, you’ll add a logo
and a cool animation.

When the user hasn’t yet pressed the Get My Location button, there are no GPS
coordinates and the Tag Location button is hidden. Instead of showing the upper
panel with absolutely no information in it, you can show a large version of the app’s
icon:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 267

The welcome screen of MyLocations

When the user taps the Get My Location button, the icon rolls out of the screen (it’s
round so that kinda makes sense) while the panel with the GPS status slides in:

The logo rolls out of the screen while the panel slides in

This is pretty easy to program thanks to the power of Core Animation and it makes
the app a whole lot more impressive to first-time users.

First you need to move the labels into a new container subview.

➤ Open the storyboard and go to the Current Location View Controller. In the
outline pane, select the six labels and the Tag Location button. With these seven
views selected, choose Editor → Embed In → View from the Xcode menu bar.

This creates a blank, white UIView and puts these labels and the button inside that
new view.

➤ Change the Background Color of this new container view to Clear Color, so
that everything becomes visible again.

The layout of the screen hasn’t changed; you have simply reorganized the view
hierarchy so that you can easily manipulate and animate this group of labels as a
whole. Grouping views in a container view is a common technique for building
complex layouts.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 268

➤ To avoid problems on 3.5-inch screens, make sure that the Get My Location
button sits higher up in the view hierarchy than the container view. If the button
sits under another view you cannot tap it anymore.

Unintuitively, in the outline pane the button must sit below the container view. If it
doesn’t, drag to rearrange:

Get My Location must sit below the container view in the outline pane

Note: When you drag the Get My Location button, make sure you’re not dropping it
into the container view. The “View” you just added and “Get My Location” should sit
at the same level in the view hierarchy.

➤ Add the following outlet to CurrentLocationViewController.swift:

@IBOutlet weak var containerView: UIView!

➤ In the storyboard, connect the UIView that contains all these labels to the
containerView outlet.

Now on to the good stuff!

➤ Add the following instance variables to CurrentLocationViewController.swift:

var logoVisible = false

lazy var logoButton: UIButton = {
 let button = UIButton(type: .custom)
 button.setBackgroundImage(UIImage(named: "Logo"), for: .normal)
 button.sizeToFit()
 button.addTarget(self, action: #selector(getLocation),
 for: .touchUpInside)
 button.center.x = self.view.bounds.midX
 button.center.y = 220
 return button
}()

The logo image is actually a button, so that you can tap the logo to get started. The
app will show this button when it starts up, and when it doesn’t have anything
better to display (for example, after you press Stop and there are no coordinates
and no error). To orchestrate this, you’ll use the boolean logoVisible.

The button is a “custom” type UIButton, meaning that it has no title text or other
frills. It draws the Logo.png image and calls the getLocation() method when

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 269

tapped.

This is another one of those lazily loaded properties; I did that because it’s nice to
keep all the initialization logic inline with the declaration of the property.

➤ Add the following method:

// MARK: - Logo View

func showLogoView() {
 if !logoVisible {
 logoVisible = true
 containerView.isHidden = true
 view.addSubview(logoButton)
 }
}

This hides the container view so the labels disappear, and puts the logoButton
object on the screen. This is the first time logoButton is accessed, so at this point
the lazy loading kicks in.

➤ In updateLabels(), change the line that says,

statusMessage = "Tap 'Get My Location' to Start"

into:

statusMessage = ""
showLogoView()

This new logic makes the logo appear when there are no coordinates or error
messages to display. That’s also the state at startup time, so when you run the app
now, you should be greeted by the logo.

➤ Run the app to check it out.

When you tap the logo (or Get My Location), the logo should disappear and the
panel with the labels ought to show up. That doesn’t happen yet, so let’s write
some more code.

➤ Add the following method:

func hideLogoView() {
 logoVisible = false
 containerView.isHidden = false
 logoButton.removeFromSuperview()
}

This is the counterpart to showLogoView(). For now, it simply removes the button
with the logo and un-hides the container view with the GPS coordinates.

➤ Add the following to getLocation(), right after the authorization status checks:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 270

if logoVisible {
 hideLogoView()
}

Before it starts the location manager, this first removes the logo from the screen if
it was visible.

Currently there is no animation code to be seen. When doing complicated layout
stuff such as this, I always first want to make sure the basics work. If they do, you
can make it look fancy with an animation.

➤ Run the app. You should see the screen with the logo. Press the Get My Location
button and the logo is replaced by the coordinate labels.

Great, now that works you can add the animation. The only method you have to
change is hideLogoView().

➤ First add an import for QuartzCore, the framework that provides Core Animation.
This goes all the way at the top of the file, as usual:

import QuartzCore

➤ Also give CurrentLocationViewController the ability to handle animation events
by making it the CAAnimationDelegate:

class CurrentLocationViewController: UIViewController,
 CLLocationManagerDelegate, CAAnimationDelegate {

➤ Then replace hideLogoView() with:

func hideLogoView() {
 if !logoVisible { return }

 logoVisible = false
 containerView.isHidden = false
 containerView.center.x = view.bounds.size.width * 2
 containerView.center.y = 40 + containerView.bounds.size.height / 2

 let centerX = view.bounds.midX

 let panelMover = CABasicAnimation(keyPath: "position")
 panelMover.isRemovedOnCompletion = false
 panelMover.fillMode = kCAFillModeForwards
 panelMover.duration = 0.6
 panelMover.fromValue = NSValue(cgPoint: containerView.center)
 panelMover.toValue = NSValue(cgPoint:
 CGPoint(x: centerX, y: containerView.center.y))
 panelMover.timingFunction = CAMediaTimingFunction(
 name: kCAMediaTimingFunctionEaseOut)
 panelMover.delegate = self
 containerView.layer.add(panelMover, forKey: "panelMover")

 let logoMover = CABasicAnimation(keyPath: "position")
 logoMover.isRemovedOnCompletion = false

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 271

 logoMover.fillMode = kCAFillModeForwards
 logoMover.duration = 0.5
 logoMover.fromValue = NSValue(cgPoint: logoButton.center)
 logoMover.toValue = NSValue(cgPoint:
 CGPoint(x: -centerX, y: logoButton.center.y))
 logoMover.timingFunction = CAMediaTimingFunction(
 name: kCAMediaTimingFunctionEaseIn)
 logoButton.layer.add(logoMover, forKey: "logoMover")

 let logoRotator = CABasicAnimation(keyPath: "transform.rotation.z")
 logoRotator.isRemovedOnCompletion = false
 logoRotator.fillMode = kCAFillModeForwards
 logoRotator.duration = 0.5
 logoRotator.fromValue = 0.0
 logoRotator.toValue = -2 * M_PI
 logoRotator.timingFunction = CAMediaTimingFunction(
 name: kCAMediaTimingFunctionEaseIn)
 logoButton.layer.add(logoRotator, forKey: "logoRotator")
}

This creates three animations that are played at the same time:

1. the containerView is placed outside the screen (somewhere on the right) and
moved to the center, while

2. the logo image view slides out of the screen, and

3. at the same time rotates around its center, giving the impression that it’s rolling
away.

Because the “panelMover” animation takes longest, you set a delegate on it so that
you will be notified when the entire animation is over.

➤ Add the following method below hideLogoView():

func animationDidStop(_ anim: CAAnimation, finished flag: Bool) {
 containerView.layer.removeAllAnimations()
 containerView.center.x = view.bounds.size.width / 2
 containerView.center.y = 40 + containerView.bounds.size.height / 2

 logoButton.layer.removeAllAnimations()
 logoButton.removeFromSuperview()
}

This cleans up after the animations and removes the logo button, as you no longer
need it.

➤ Run the app. Tap on Get My Location to make the logo disappear. I think the
animation looks pretty cool.

Tip: To get the logo back so you can try again, first choose Location → None from
the Simulator’s Debug menu. Then tap Get My Location followed by Stop to make
the logo reappear.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 272

Apple says that good apps should “surprise and delight” and modest animations
such as these really make your apps more interesting to use – as long as you don’t
overdo it!

Adding an activity indicator
When the user taps the Get My Location button, you currently change the button’s
text to say Stop to indicate the change of state. You can make it even clearer to the
user that something is going on by adding an animated activity “spinner”.

It will look like this:

The animated activity spinner shows that the app is busy

UIKit comes with a standard control for this, UIActivityIndicatorView. You’re going
to create this spinner control programmatically, because not everything has to be
done in Interface Builder (even though you could).

The code to change the appearance of the Get My Location button sits in the
configureGetButton() method, so that’s also a good place to show and hide the
spinner.

➤ Change configureGetButton() to the following:

func configureGetButton() {
 let spinnerTag = 1000

 if updatingLocation {
 getButton.setTitle("Stop", for: .normal)

 if view.viewWithTag(spinnerTag) == nil {
 let spinner = UIActivityIndicatorView(
 activityIndicatorStyle: .white)
 spinner.center = messageLabel.center
 spinner.center.y += spinner.bounds.size.height/2 + 15
 spinner.startAnimating()
 spinner.tag = spinnerTag
 containerView.addSubview(spinner)
 }
 } else {
 getButton.setTitle("Get My Location", for: .normal)

 if let spinner = view.viewWithTag(spinnerTag) {
 spinner.removeFromSuperview()
 }
 }

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 273

}

In addition to changing the button text to “Stop”, you create a new instance of
UIActivityIndicatorView. Then you do some calculations to position the spinner
view below the message label at the top of the screen. The call to addSubview()
makes the spinner visible.

To keep track of this spinner view, you give it a tag of 1000. You could use an
instance variable but this is just as easy and it keeps everything local to the
configureGetButton() method. It’s nice to have everything in one place.

When it’s time to revert the button to its old state, you call removeFromSuperview()
to remove the activity indicator view from the screen.

And that’s all you need to do.

➤ Run the app. There should now be a cool little animation while the app is busy
talking to the GPS satellites.

Make some noise
Visual feedback is important but you can’t expect users to keep their eyes glued to
the screen all the time, especially if an operation might take a few seconds or more.

Emitting an unobtrusive sound is a good way to alert the user that a task is
complete. When your iPhone has sent an email, for example, you hear a soft
“Whoosh” sound.

You’re going to add a sound effect to the app too, which is to be played when the
first reverse geocoding successfully completes. That seems like a reasonable
moment to alert the user that GPS and address information has been captured.

There are many ways to play sound on iOS but you’re going to use one of the
simplest: system sounds. The System Sound API is intended for short beeps and
other notification sounds, which is exactly the type of sound that you want to play
here.

➤ Add an import for AudioToolbox, the framework for playing system sounds, to the
top of CurrentLocationViewController.swift:

import AudioToolbox

➤ Add the soundID instance variable:

var soundID: SystemSoundID = 0

Because writing just 0 would normally give you a variable of type Int, you explicitly
mention the type that you want it to be: SystemSoundID. This is a numeric identifier
– sometimes called a “handle” – that refers to a system sound object. 0 means no
sound has been loaded yet.

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 274

➤ Add the following methods to the bottom of the class:

// MARK: - Sound Effect

func loadSoundEffect(_ name: String) {
 if let path = Bundle.main.path(forResource: name, ofType: nil) {
 let fileURL = URL(fileURLWithPath: path, isDirectory: false)
 let error = AudioServicesCreateSystemSoundID(fileURL as CFURL,
 &soundID)
 if error != kAudioServicesNoError {
 print("Error code \(error) loading sound at path: \(path)")
 }
 }
}

func unloadSoundEffect() {
 AudioServicesDisposeSystemSoundID(soundID)
 soundID = 0
}

func playSoundEffect() {
 AudioServicesPlaySystemSound(soundID)
}

The loadSoundEffect() method loads the sound file and puts it into a new sound
object. The specifics don’t really matter, but you end up with a reference to that
object in the soundID instance variable.

➤ Call loadSoundEffect() from viewDidLoad():

loadSoundEffect("Sound.caf")

➤ In locationManager(didUpdateLocations), in the geocoder’s completion closure,
change the following code:

if error == nil, let p = placemarks, !p.isEmpty {

 if self.placemark == nil { // add this
 print("FIRST TIME!")
 self.playSoundEffect()
 }

 self.placemark = p.last!
} else {
 . . .

The added if-statement simply checks whether the self.placemark instance variable
is still nil, in which case this is the first time you’ve reverse geocoded an address.
It then plays a sound using the playSoundEffect() method.

Of course, you shouldn’t forget to include the actual sound effect into the project!

➤ Add the Sound folder from this tutorial’s Resources to the project. Make sure
Copy items if needed is selected (click the Options button in the file open panel to

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 275

reveal this option).

➤ Run the app and see if you can let it make some noise. The sound should only be
played for the first address it finds – when you see the FIRST TIME! print – even if
more precise locations keep coming in afterwards.

Note: If you don’t hear the sound on the Simulator, try the app on a device. There
have been reports that system sounds are not always playing in the simulators.

CAF audio files

The Sound folder contains a single file, Sound.caf. The caf extension stands
for Core Audio Format, and it’s the preferred file format for these kinds of
short audio files on iOS.

If you want to use your own sound file but it is in a different format than CAF
and your audio software can’t save CAF files, then you can use the afconvert
utility to convert the audio file. You need to run it from the Terminal:
$ /usr/bin/afconvert -f caff -d LEI16 Sound.wav Sound.caf

This converts the Sound.wav file into Sound.caf. You don’t need to do this for
the audio file from this tutorial’s Sound folder because that file is already in
the correct format.

But if you want to experiment with your own audio files, then knowing how to
use afconvert might be useful. (By the way, iOS can play .wav files just fine,
but .caf is more optimal.)

The icon and launch images
The Resources folder for this tutorial contains an Icon folder with the icons for this
app.

➤ Import the icon images into the asset catalog. Simply drag them from Finder into
the AppIcon group.

It’s best to drag them one-by-one into their respective slots (if you drag the whole
set of icons into the group at once, Xcode can get confused).

The icons in the asset catalog

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 276

The app currently also has a launch file, LaunchScreen.storyboard, that provides
the “splash” image while the app loads.

Having a launch file is required to take advantage of the larger screens of the
iPhone 6s, 7, and Plus. Without this launch file, the app will think it’s running on a
4-inch screen (like the iPhone SE) but gets scaled up to fill the extra pixels on the
iPhone 6 and 7 models. That doesn’t look very good, except maybe for games. So
you definitely want the app to use a launch file.

Instead of using a storyboard for the launch screen you can also supply a set of
images. Let’s do that for this app.

➤ In the Project Settings screen, in the General tab, find the App Icons and
Launch Images section. Click the Use Asset Catalog button next to Launch
Images Source:

Using the asset catalog for launch images

Xcode now asks if you want to migrate the launch images. Click Migrate.

➤ Make the field for Launch Screen File empty.

➤ Also remove LaunchScreen.storyboard from the project. It’s also a good idea
to delete the app from the Simulator, or even reset it, so that there is no trace of
the old launch screen.

➤ Open Assets.xcassets. There is now a LaunchImage item in the list (this may
also be called BrandAsset). Select it and go to the Attributes inspector. Under both
iOS 8.0 and Later and iOS 7.0 and Later, put checkmark by iPhone Portrait:

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 277

Enabling the launch images for iPhone portrait

You now have four slots for dropping the launch images into. (If you have any slots
that say “Unassigned”, then select and remove them by pressing the delete key.)

The Resources folder for this tutorial contains a Launch Images folder. Let’s take a
look at one of those images, Launch Image Retina 4.png:

The launch image for this app

The launch image only has the tab bar and the logo button, but no status bar or
any buttons. The reason it has no “Get My Location” button is that you don’t want
users to try and tap it while the app is still loading (it’s not really a button!).

To make this launch image, I ran the app in the Simulator and chose File → Save
Screen Shot. This puts a new PNG file on the Desktop. I then opened this image in
Photoshop and blanked out any text and the status bar portion of the image. The
iPhone will draw its own status bar on top anyway.

➤ Drag the files from the Launch Images folder into the asset catalog, one at a
time. It should be pretty obvious into which slot each image goes.

Done. That was easy. :-)

And with that, the MyLocations app is complete! Woohoo!

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 278

You can find the final project files for the app under 07 - Finished App in the
tutorial’s Source Code folder.

The end
Congrats for making it this far! This has been another lengthy lesson with a lot of
theory to boot. I hoped you learned a lot of useful stuff.

The final storyboard for the MyLocations app looks like this:

In this lesson you took a more detailed look at Swift but there is still plenty to
discover. To learn more about the Swift programming language, I recommend that
you read the following books:

• The Swift Programming Language by Apple. This is a free download on the
iBooks Store. If you don’t want to read the whole thing, at least take the Swift
tour. It’s a great introduction to the language.

• Swift Apprentice by the raywenderlich.com Tutorial Team. This is a book that
teaches you everything you need to know about Swift, from beginning to
advanced topics. This is a sister book to the iOS Appentice; the iOS Apprentice
focuses more on making apps, while the Swift Apprentice focuses more on the
Swift language itself. www.raywenderlich.com/store

There are several good Core Data beginner books on the market. Here are two

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 279

recommendations:

• Core Data by Tutorials by the raywenderlich.com Tutorial Team. One of the few
Core Data books that is completely up-to-date with the lastest iOS and Swift
versions. This book is for intermediate iOS developers who already know the
basics of iOS and Swift development but want to learn how to use Core Data to
save data in their apps. www.raywenderlich.com/store

• Core Data Programming Guide by Apple. If you want to get into the nitty
gritty, then Apple’s official guide is a must-read. You can learn a ton from this
guide. developer.apple.com/library/prerelease/content/documentation/Cocoa/
Conceptual/CoreData/#//apple_ref/doc/uid/TP40001075-CH2-SW1

Credits for this tutorial:

• Sound effect based on a flute sample by elmomo, downloaded from The
Freesound Project (freesound.org)

• Image resizing category is based on code by Trevor Harmon (vocaro.com/trevor/
blog/2009/10/12/resize-a-uiimage-the-right-way/)

• HudView code is based on MBProgressHud by Matej Bukovinski (github.com/
matej/MBProgressHUD)

Are you ready for the final lesson? Then continue on to tutorial 4, where you’ll
make an app that communicates over the network to a web service!

iOS Apprentice Tutorial 3: MyLocations

raywenderlich.com 280

	Tutorial 3: MyLocations
	The MyLocations app
	Swift review
	Getting GPS coordinates
	Objects vs. classes
	The Tag Location screen
	Value types and reference types
	Storing the locations with Core Data
	The Locations tab
	Hierarchies
	Pins on a map
	The photo picker
	Making the app look good
	The end

